Required Heat = Q
Q = Mass * specific heat of water * change in temp.
Q = 5g * 1g/cal*degC * 20degC
Q = 100 cal of heat is required
To convert calories to Joules,
1 cal = 4.184 Joules
100cal = 418.4 J of heat is needed
Answer:

Explanation:
The inital electrostatic force between the two spheres is given by:

where
is the initial force
k is the Coulomb's constant
q1 and q2 are the charges on the two spheres
r is the distance between the two spheres
The problem tells us that the two spheres are moved from a distance of r=20 cm to a distance of r'=10 cm. So we have

Therefore, the new electrostatic force will be

So the force has increased by a factor 4. By using
, we find

Answer:
a) F = 680 N, b) W = 215 .4 J
, c) F = 1278.4 N
Explanation:
a) Hooke's law is
F = k x
To find the displacement (x) let's use the elastic energy equation
= ½ k x²
k = 2
/ x²
k = 2 85.0 / 0.250²
k = 2720 N / m
We replace and look for elastic force
F = 2720 0.250
F = 680 N
b) The definition of work is
W = ΔEm
W =
- 
W = ½ k (
² - x₀²)
The final distance
= 0.250 +0.220
= 0.4750 m
We calculate the work
W = ½ 2720 (0.47² - 0.25²)
W = 215 .4 J
We calculate the strength
F = k 
F = 2720 0.470
F = 1278.4 N
The displacement of the rock will be the same as the total horizontal distance traveled. Here the rock's horizontal position is given by

so to find the horizontal distance it traversed, we need to know the time it took for the rock to return to the ground. We use the rock's vertical position over time to figure that out:

where
is the acceleration due to gravity. Then we find that
, at which point we find
.
Answer:
By using moving magnet and a copper wire together, electric generators creates electricity. Electricity generators essentially convert kinetic energy (the energy of motion) into electrical energy.