HI
So, the formula for water is H2O
When you have the same amount of the reactants , hydrogen will be the limiting reactant.
Limiting reactant is the thing that runs out first.
Answer:
C. to explore the composition of Mars
Explanation:
Initially, in 2019, an unmanned mission is planned to orbit the moon. The spacecraft would flyby the moon. In 2020's, the Exploration Mission 2 would be a manned mission on the same path around the moon. This would be the base for future goal of collecting samples from mars. In later of 2020's unmanned spacecraft would be sent to mars and a robot would collect the samples from the Martian surface. In 2030's, a crew would be sent to Mars.
The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4
Answer:
An element is to a compound as an organ is to tissue
Explanation: