Answer:
9.8 × 10²⁴ molecules H₂O
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Organic</u>
<u>Stoichiometry</u>
- Analyzing reaction rxn
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[RxN - Unbalanced] CH₄ + O₂ → CO₂ + H₂O
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 130 g CH₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[RxN] 1 mol CH₄ → 2 mol H₂O
[PT] Molar Mass of C: 12.01 g/mol
[PT] Molar Mass of H: 1.01 g/mol
Molar Mass of CH₄: 12.01 + 4(1.01) = 16.05 g/mol
<u>Step 3: Stoichiometry</u>
- [DA] Set up conversion:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
9.75526 × 10²⁴ molecules H₂O ≈ 9.8 × 10²⁴ molecules H₂O
Mg3N2 is Magnesium nitride
A colloid has the particles that have the ability to scatter light called the Tyndall effect named after the scientist named Tyndall. A suspension has large suspended particles that settle out at the bottom of the container. A solution has small particles that are evenly distributed throughout. Hence the answer is choice 2.
<span>Fe(NO3)2
The NO3 part is a poly-atomic ion with total charge -1.
This is because Fe has a +2 charge and two NO3's with a -1 charge will balance out to 0.
Most often we just make the assumption that Oxygen has a -2 oxidation number because it is very electro-negative.
So to find N, we just need an oxidation number that balances out with 3(-2) to get -1 (the total charge of the ion)</span>