Nitrogen (N2) and hydrogen (H2) gases react to form ammonia, which requires -99.4 J/K of standard entropy (ΔS°).
What is standard entropy?
The difference between the total standard entropies of the reaction mixture and the summation of the standard entropies of the outputs is the standard entropy change. Each entropy in the balanced equation needs to be compounded by its coefficient, as shown by the letter "n."
Calculation:
Balancing the given reaction following-
1/2 N₂(g) + 3/2 H₂ (g)→ NH₃ (g)
ΔS° = [1 mol x S° (NH₃)g] - [1/2 mol x S° (N₂)g] - [3/2 mol x S°(H₂)g]
Here S° = standard entropy of the system
Insert into the aforementioned equation all the typical entropy values found in the literature:
ΔS° = [1 mol x 192.45 J/mol.K] - [1/2 mol x 191.61 J/mol.K] - [3/2 mol x 130.684 J/mol.K]
⇒ΔS° = - 99.4 J/K
Therefore, the standard entropy, ΔS° is -99.4 J/K.
Learn more about standard entropy here:
brainly.com/question/14356933
#SPJ4
Answer:
there is no d electron that can be promoted via the absorption of visible light
Explanation:
One of the properties of transition elements is the possession of incompletely filled d orbitals. This property accounts for their unique colours.
The colours of transition metal compounds stem from d-d transition of electrons due to the presence of vacant d orbitals of appropriate energy to which electrons could be promoted.
For elements whose atoms have a d10 configuration, such vacant orbitals does not exist hence their compounds are not colored.
Sometimes, the colour of transition metal compounds stem from ligand to metal charge transfer(LMCT) for instance in KMnO4.
Answer:
single displacement
Explanation:
the Fe was switched out with the C. they are the only ones that switched, making it a single displacement