<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Networks of feeding relationships is correct
La respuestas de lo que descirbiste es 18.02 gramos
Saludos
The moles which were measured out is calculated using the following formula
moles = mass/molar mass
molar mass of CuBr2.4H20 = 63.5 Cu + ( 2 x79.9) br + ( 18 x4_) h20 = 295.3 g/mol
moles is therefore= 5.2 g/ 295.3 g/mol= 0.0176 moles
The World Is Too Much with Us" is a sonnet by the English Romantic poet William Wordsworth. In it, Wordsworth criticises the world of the First Industrial Revolution for being absorbed in materialism and distancing itself from nature. Composed circa 1802, the poem was first published in Poems, in Two Volumes (1807). Like most Italian sonnets, its 14 lines are written in iambic pentameter.