Answer:
an ion is an element that has different numbers of protons and electrons
Explanation:
An ion is positive when it has more protons than electrons and negative when it has more electrons than ions.
(Hope this was helpful!) :)
Answer:
electron sea model for metals suggest that valence electrons drift freely around the metal cations.
Explanation:
Explanation: In electron sea model, the valence electrons in metals are delocalized instead of orbiting around the nucleus. ... These electrons are free to move within the metal atoms. Thus, we can conclude that the electron sea model for metals suggest that valence electrons drift freely around the metal cations.
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!
False, because water vapor, water vapour or aqueous vapor, is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Unlike other forms of water, water vapor is invisible.