Answer is: <span>yield of a reaction is 56,4%.
</span>Chemical reaction: PCl₃ + 3H₂O → 3HCl + H₃PO₃.
m(PCl₃) = 200 g.
m(HCl) = 91,0 g.
n(PCl₃) = m(PCl₃) ÷ M(PCl₃).
n(PCl₃) = 200 g ÷ 137,33 g/mol.
n(PCl₃) = 1,46 mol.
n(HCl) = m(HCl) ÷ M(HCl).
n(HCl) = 91 g ÷ 36,45 g/mol.
n(HCl) = 2,47 mol.
From reaction: n(PCl₃) : n(HCl) = 1 : 3.
n(HCl) = 1,46 mol · 3 = 4,38 mol.
Yield of reaction: 2,47 mol ÷ 4,38 mol · 100% = 56,4%.
Answer:
1.7 × 10 ^42
Explanation:
Using Nernst equation
E°cell = RT/nF Inq
at equilibrium
Q=K
E°cell = 0.0257 /n Ink= 0.0592/n log K
Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V
Ag+aq)+e−→Ag(s) E∘= 0.80 V
Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s)
balance the reaction
Fe → Fe²⁺ + 2e⁻ reversing for oxidation E° = 0.45 v
2 Ag⁺ +2e⁻ → 2Ag
n = 2 moles and K = equilibrium constant
E° cell = 0.80 + 0.45 = 1.25 V
E° cell = (0.0592 / n) log K
substitute the value into the equations and solve for K
(1.25 × 2) / 0.0592 = log K
42.23 = log K
k = 10^ 42.23
K = 1.7 × 10 ^42
The product would be 2NaCI. Hope this helps xx
No - a precipitation will occur though. Potassium nitrate is soluble in water, so the potassium and nitrate ions will remain spectator ions and stay in solution. Lead (II) hydroxide is not soluble, and will precipitate out of solution to form a solid product.