Active transport is the moving of molecules across the membrane of the cell against the concentration gradient with the use of ATP.
Low to high concentration. Concentration gradient is the diffusion (movement of molecules from regions of low concentration) from high to low with the gradient. Active transport is from low to high, against the gradient.
Answer:
eg=linear, mg=linear
Explanation:
First of all, it must be stated that most triatomic molecules are either linear or bent. This depends on the electron geometry of the molecule and the number of bonding groups, multiple bonds and lone pairs present.
CO2 contains four regions of electron density and two bonding groups. For a specie containing two bonding groups, a linear molecular geometry is expected with an angle of 180°.
For a specie having two bonding groups and no lone pairs with multiple bonds, the expected electron geometry is also linear.
Length of 1 side 1.2*10^-5km =1.2*10^-5*10^5 =1.2cm
<span>volume of the cube (1.2)^3=1.728 cm^3 </span>
<span>density= mass/volume= 1.1/1.728=0.636 g/cm^3</span>
Answer:
Ne, Ar, and Kr are gases at STP, unreactive, and are generally monatomic.
Explanation:
they are unreactive and monoatomic and thats why have a very low boiling point.
Explanation:
Molar mass of HBr = 81 g/mol
Molar mass of nitrogen dioxide gas = 46 g/mol
Molar mass of ethane = 30 g/mol
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:

So, the gas with least molar mass will effuse out fastest from the container and that is ethane gas.
The formula for average kinetic energy is:

where,
k = Boltzmann’s constant = 
T = temperature = 273.15 K ( at STP)
As we can see from the formula that kinetic energy depends upon only temperature of the gas molecule.
So, from this we can say that all the gas molecules have the same average kinetic energy at this temperature.