Answer:
Diamond, graphite and fullerness
Explanation:
Diamond is clear and transparent but graphite is black and opaque
Answer:
Mass of H₂O is 3.0g
Explanation:
The reaction equation is given as:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
Parameters that are known:
Mass of CO₂ used = 7.3g
Unknown: mass of water consumed = ?
Solution
To solve this kind of problem, we simply apply some mole concept relationships.
- First, we work from the known to the unknown. From the problem, we have 7.3g of CO₂ that was used. We can find the number of moles from this value using the expression below:
Number of moles of CO₂ = 
- From this number of moles of CO₂, we can use the balanced equation to relate the number of moles of CO₂ to that of H₂O:
6 moles of CO₂ reacted with 6 moles of H₂O(1:1)
- We can then use the mole relationship with mass to find the unknown.
Workings
>>>> Number of moles of CO₂ =?
Molar mass of CO₂ :
Atomic mass of C = 12g
Atomic mass of O = 16g
Molar mass of CO₂ = 12 + (2 x16) = 44gmol⁻¹
Number of moles of CO₂ =
= 0.166moles
>>>>>> if 6 moles of CO₂ reacted with 6 moles of H₂O, then 0.166moles of CO₂ would produce 0.166moles of H₂O
>>>>>> Mass of water consumed = number of mole of H₂O x molar mass
Mass of H₂0 = 0.166 x ?
Molar mass of H₂O:
Atomic mass of H = 1g
Atomic mass of O = 16
Molar mass of H₂O = (2x1) + 16 = 18gmol⁻¹
Mass of H₂O = 0.166 x 18 = 3.0g
Answer:
nano3+agcl2
Explanation:
double displacement reaction
Answer:
The answer to this is
The velocity of the 27.3Kg marble after collision is = 16.24 cm/s
Explanation:
To solve the question, let us list out the given variables and their values
Mass of first marble m1 = 27.3g
Velocity of the first marble v1 = 21.0 cm/s
Mass of second marble m2 = 11.7g
Velocity of the second marble v2 = 12.6 cm/s
After collision va1 = unknown and va2 = 23.7 cm/s
From Newton's second law of motion, force = rate of change of momentum produced
Hence m1v1 + m2v2 = m1va1 + m2va2 or
va1 = (m1v1 + m2v2 - m2va2)÷m2 or (720. 72-277.29)÷m1 → va1 = 16.24 cm/s
The velocity of the 27.3Kg marble after collision is = 16.24 cm/s