Answer:
Exercise 1;
The centripetal acceleration is approximately 94.52 m/s²
Explanation:
1) The given parameters are;
The diameter of the circle = 8 cm = 0.08 m
The radius of the circle = Diameter/2 = 0.08/2 = 0.04 m
The speed of motion = 7 km/h = 1.944444 m/s
The centripetal acceleration = v²/r = 1.944444²/0.04 ≈ 94.52 m/s²
The centripetal acceleration ≈ 94.52 m/s²
Answer:
L’énergie solaire récolte l’énergie radiante portée par la lumière de notre soleil en la convertissant en électricité.Biomasse des plantes. Les plantes sont capables d’exploiter et d’utiliser l’énergie lumineuse dans un processus appelé photosynthèse.
Complete question:
Point charges q1=- 4.10nC and q2=+ 4.10nC are separated by a distance of 3.60mm , forming an electric dipole. The charges are in a uniform electric field whose direction makes an angle 36.8 ∘ with the line connecting the charges. What is the magnitude of this field if the torque exerted on the dipole has magnitude 7.30×10−9 N⋅m ? Express your answer in newtons per coulomb to three significant figures.
Answer:
The magnitude of this field is 826 N/C
Explanation:
Given;
The torque exerted on the dipole, T = 7.3 x 10⁻⁹ N.m
PEsinθ = T
where;
E is the magnitude of the electric field
P is the dipole moment
First, we determine the magnitude dipole moment;
Magnitude of dipole moment = q*r
P = 4.1 x 10⁻⁹ x 3.6 x 10⁻³ = 1.476 x 10⁻¹¹ C.m
Finally, we determine the magnitude of this field;
E = 826 N/C (in three significant figures)
Therefore, the magnitude of this field is 826 N/C
Based on this electric field diagram, the statement which best compares the charge of A with B is "A is negatively charged and B is positively charged. The charge on A is greater than that on B".
<u>Answer:</u> Option A
<u>Explanation:</u>
The charge is quantized represented as elementary charge, about 1.602×10−19 coulombs. Their are two kinds of electric charging: positive and negative (usually transported, separately, by protons and electrons). Like charges repel each other, while attraction occurs among unlike charges. An entity without net charge is considered neutral. If a piece of matter comprises more electrons than protons, it has a negative charge, when there are fewer, it'll have a positive charge and when there are equal amounts, this will be neutral.
Explanation:
R = V/I
Since this is an I/V graph, the greater the slope of the line the lower the R value.
Hence we find the line with the smallest slope, which is conductor M.