Answer: hello your question lacks some data attached below is the missing data
answer : T - mg = ma
Explanation:
Given that the vine has a fixed end and Tarzan's path is circular
At Tarzans lowest point the point can be expressed as shown below.
It can be expressed as : T - mg = ma
Answer:
61.4 s
Explanation:
The distance d₁ traveled by the asteroid:

The distance d₂ traveled by the space ship:

The total distance d:

Solving for time t:

Answer:
a =45 m/s2
t = 2 seconds
Explanation:
Hi, to answer this question we have to apply the next formula:
v^2 = u^2 +2 a d
Where:
v = final velocity = 90 m/s
u = initial velocity = 0 m/s (shots from rest)
a = acceleration (m/s2)
d = distance = 90m
90^2 = 0^2 + 2a(90)
Solving for a:
8,100= 180 a
8,100/180 = a
a = 45 m/s^2
For time:
v = u + at
90 = 0 + 45t
90/45=t
t =2 seconds
To solve this problem it is necessary to apply the concepts related to Malus' law. Malus' law indicates that the intensity of a linearly polarized ray of light that passes through a perfect analyzer with a vertical optical axis is equivalent to:

Indicates the intensity of the light before passing through the Polarizer,
I = The resulting intensity, and
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light.
There is 3 polarizer, then
For the exit of the first polarizer we have that the intensity is,

For the third polarizer then we have,

Replacing with the first equation,



Therefore the transmitted intensity now is
of the initial intensity.
It’s D. An enlargement (hope this helps!)