Answer:
23 m/s downward
__________________________________________________________
<em>Taking the downward direction as positive</em>
<u>We are given:</u>
Initial velocity of the marble (u) = 0 m/s
Time interval (t) = 2.3 seconds
Final velocity (v) = x m/s
<u>Solving for the Final velocity:</u>
<u>Acceleration of the Marble:</u>
We know that gravity will make the marble accelerate at a constant acceleration of 10 m/s
<u>Final velocity:</u>
v = u + at [First equation of motion]
x = 0 + (10)(2.3) [replacing the given values]
x = 23 m/s
Hence, after 2.3 seconds, the marble will move at a velocity of 23 m/s in the downward direction
Answer:
i would say a) two playlists
hope this helps!
Explanation:
Answer:
75.36 mph
Explanation:
The distance between the other car and the intersection is,
The distance between the police car and the intersection is,
(Negative sign indicates that he is moving towards the intersection)
Therefore the distance between them is given by,
The rate of change is,
Now finding
when
from (1) we have
The officer's radar gun indicates 25 mph pointed at the other car then,
when
from
From (2) we get
Hence the speed of the car is 
Answer:
The kilogram (kg) is defined by taking the fixed numerical value of the Planck constant h to be 6.62607015 ×10−34 when expressed in the unit J s, which is equal to kg m2 s−1, where the meter and the second are defined in terms of c and ∆νCs.