Answer:
Explanation:
We shall apply Stefan's formula
E = AσT⁴
When T = 300
I₁ = Aσ x 300⁴
When T = 400K
I₂ = Aσ x 400⁴
I₂ / I₁ = 400⁴ / 300⁴
= 256 / 81
= 3.16
I₂ = 3.16 I₁ .
Answer:
please the answer below
Explanation:
(a) If we assume that our origin of coordinates is at the position of charge q1, we have that the potential in both points is

k=8.89*10^9
For both cases we have

(b) by replacing this values of r in the expression for V we obtain

hope this helps!!
Refer to the diagram shown below.
g = 9.8 m/s², and air resistance is ignored.
For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.
For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.
Let a = the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²
Answer: 0.665 m/s² (nearest thousandth)