1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s344n2d4d5 [400]
3 years ago
8

Consider a blackbody that radiates with an intensity I1I1I_1 at a room temperature of 300K300K. At what intensity I2I2I_2 will t

his blackbody radiate when it is at a temperature of 400K400K
Physics
1 answer:
kap26 [50]3 years ago
5 0

Answer:

Explanation:

We shall apply Stefan's formula

E = AσT⁴

When T = 300

I₁ = Aσ x 300⁴

When T = 400K

I₂ = Aσ x 400⁴

I₂ / I₁ = 400⁴ / 300⁴

= 256 / 81

= 3.16

I₂ = 3.16 I₁ .

You might be interested in
Which statement describes a characteristic of an experimental design that
Anarel [89]

Answer:

c

Explanation:

4 0
3 years ago
Two forces are applied to a car in an effort to accel-
mestny [16]

Answer:

R=2F

Explanation:

As the forces are in same direction so the resultant force will be:

R=F+F

R=2F

4 0
3 years ago
I WILL GIVE BRAINLIEST IF SOMEONE GETS THIS......
pav-90 [236]

Answer:

Explanation:

a)

Firstly to calculate the total mass of the can before the metal was lowered we need to add the mass of the eureka can and the mass of the water in the can. We don't know the mass of the water but we can easily find if we know the volume of the can. In order to calculate the volume we would have to multiply the area of the cross section by the height. So we do the following.

100cm^{2} x 10cm = 1000cm^{3}

Now in order to find the mass that water has in this case we have to multiply the water's density by the volume, and so we get....

\frac{1g}{cm^{3} } x 1000cm^{3} = 1000g or 1kg

Knowing this, we now can calculate the total mass of the can before the metal was lowered, by adding the mass of the water to the mass of the can. So we get....

1000g + 100g = 1100g or 1.1kg

b)

The volume of the water that over flowed will be equal to the volume of the metal piece (since when we add the metal piece, the metal piece will force out the same volume of water as itself, to understand this more deeply you can read the about "Archimedes principle"). Knowing this we just have to calculate the volume of the metal piece an that will be the answer. So this time in order to find volume we will have to divide the total mass of the metal piece by its density. So we get....

20g ÷ \frac{8g}{cm^{3} } = 2.5 cm^{3}

c)

Now to find out the total mass of the can after the metal piece was lowered we would have to add the mass of the can itself, mass of the water inside the can, and the mass of the metal piece. We know the mass of the can, and the metal piece but we don't know the mass of the water because when we lowered the metal piece some of the water overflowed, and as a result the mass of the water changed. So now we just have to find the mass of the water in the can keeping in mind the fact that 2.5cm^{3} overflowed. So now we the same process as in number a) just with a few adjustments.

\frac{1g}{cm^{3} } x (1000cm^{3} - 2.5cm^{3}) = 997.5g

So now that we know the mass of the water in the can after we added the metal piece we can add all the three masses together (the mass of the can. the mass of the water, and the mass of the metal piece) and get the answer.

100g + 997.5g + 20g = 1117.5g or 1.1175kg

5 0
3 years ago
For the circuit shown in (Figure 1), find the potential difference between points a and b. Each resistor has
Lynna [10]

The potential difference between points a and b is zero.

<h3>Total emf of the series circuit</h3>

The total emf in the circuit is the sum of all the emf in the circuit.

emf(total) = 1.5 + 1.5 = 3.0 V

<h3>Potential difference</h3>

The potential difference between two points, a and b is calculated as follows;

V(ab) = Va - Vb

V(ab) = 1.5 - 1.5

V(ab) = 0

Thus, the potential difference between points a and b is zero.

Learn more about potential difference here: brainly.com/question/3406867

3 0
2 years ago
The air in a kitchen has a mass of 60.0kg and a specific heat of 1505J/(kg°C).
BARSIC [14]
Your answer is 632,100J which is Choice D
8 0
3 years ago
Read 2 more answers
Other questions:
  • Who expressed particles by wave equations?
    13·1 answer
  • A 25 N force at 60° is required to set a crate into motion on a floor. What is the value of the static friction?
    13·1 answer
  • What 2 kinds of substances does convection occur ?
    7·1 answer
  • What changes in the original atom are expected as a result of this natural phenomenon
    15·1 answer
  • Si m1 es 6kg y m2 es 14kg y la masa de la polea es despreciable ¿Cual es la aceleración que adquiere el sistema?
    9·1 answer
  • Does the horizontal motion of the projectile depend on the vertical motion?
    10·2 answers
  • Where does the energy form to give the roller coaster potential energy at the top of the first hill?
    13·1 answer
  • An object is thrown straight down with an initial speed of 4 m/s from a window which is 8 m above the ground. Calculate: a) The
    13·1 answer
  • First Amendment
    15·2 answers
  • What have we learned from the work of harlow shapley and others about the location of the sun in the milky way galaxy?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!