Explanation:
It is given that,
Initially, the jogger is at rest u₁ = 0
He accelerates from rest to 4.86 m, v₁ = 4.86 m
Time, t₁ = 2.43 s
A car accelerates from u₂ = 20.6 to v₂ = 32.7 m/s in t₂ = 2.43 s
(a) Acceleration of the jogger :


a₁ = 2 m/s²
(b) Acceleration of the car,


a₂ = 4.97 m/s²
(c) Distance covered by the car,


d₁ = 5.904 m
Distance covered by the jogger,


d₂ = 64.73 m
The car further travel a distance of, d = 64.73 m - 5.904 m = 58.826 m
Hence, this is the required solution.
Answer:
B. counterclockwise
Explanation:
We can solve the problem by using the right-hand rule:
- put your thumb finger of the right hand in the same direction of the current in the wire (upward)
- wrap the other fingers around the thumb
- the direction of the other fingers will give the direction of the magnetic field lines
By doing these steps, we see that the other fingers form concentric circles in a counterclockwise direction (seen from above), so this is the direction of the magnetic field lines.
Answer:
400 N
Explanation:
By the law of friction,

is the maximum frictional force,
is the coefficient of friction and
is the reaction on the refrigerator. On a horizontal surface, the reaction is equal to the weight of the refrigerator.


While not moving, the fricition on the refrigerator is static friction. So, 

This is the maximum frictional force and is more than the applied horizontal force of 400 N. Frictional force cannot be more than the applied force, else it would actually pull the refrigerator backwards (a strange thing, if it were to happen). It is equal to the extent of the applied force because the applied force is not enough to overcome the maximum.
Hence the frictional force is 400 N.
PS: Note that we do not use the coefficient of kinetic friction because applied force could not overcome the static friction.
<span> One </span>volt<span> is </span>defined<span> as the difference in electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points.</span>