Given, half life of a certain radioactive element = 800 years.
Amount of substance remaining at time t = 12.5%
Lets consider the initial amount of the radioactive substance = 100%
Using the half life equation:
A = A₀(1/2)^t/t₁/₂
where A₀ is the amount of radioactive substance at time zero and A is the amount of radioactive substance at time t, and t₁/₂ is the half-life of the radioactive substance.
Plugging the given data into the half life equation we have,
12.5 = 100 . (1/2)^t/800
12.5/100 = (1/2)^t/800
0.125 = (0.5)^t/800
(0.5)^3 = (0.5)^t/800
3 = t/800
t = 2400 years
Thus the object is 2400 years old.
Answer:
2 C4H10 + 5 O2 → 4 CH3CO2H + 2 H2O.
Explanation:
Light naphtha components are readily oxidized by oxygen or even air to give peroxides, which decompose to produce acetic acid according to the chemical equation, illustrated with butane .
Your answer would be D, single replacement
Answer: 714 g Al2O3
Explanation: Solution attached
First convert mass of O2 to moles
Do the mole ratio between O2 and Al2O3 from the balanced equation.
Convert moles of Al2O3 to mass using its molar mass.
It's proteins, (i took the the test and got an A) good luck hope this helps!!!