Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15

6x + 20
Step-by-step explanation:
- <u>To</u><u> </u><u>find</u><u> </u><u>:</u><u>-</u>
Perimeter of rectangle
- <u>Given</u><u> </u><u>:</u><u>-</u>
Length = 2x + 7
Breadth/width = x + 3
- <u>Solution</u><u> </u><u>:</u><u>-</u>
<em>We</em><em> </em><em>know</em><em> </em><em>that</em>
<em>
</em>
<em>Now</em><em> </em><em>we</em><em> </em><em>will</em><em> </em><em>substitute</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>of</em><em> </em><em>length</em><em> </em><em>and</em><em> </em><em>breadth</em>
<em>
</em>
Answer: C (third choice)
Step-by-step explanation:
Square roots cannot hold negative x values as it will create an imaginary number.
Therefore the starting value of x must be starting at 0 and then moving to infinity
10. x=y/6+1 11. x=-2g+r/2