Answer:
ΔT= 11.94 °C
Explanation:
Given that
mass of water = 10 kh
Time t= 15 min
Heat lot from water = 400 KJ
Heat input to the water = 1 KW
Heat input the water= 1 x 15 x 60
=900 KJ
By heat balancing
Heat supply - heat rejected = Heat gain by water
As we know that heat capacity of water


Now by putting the values
900 - 400 = 10 x 4.187 x ΔT
So rise in temperature of water ΔT= 11.94 °C
Answer:
investment 10 years from now is $1,238,000
.
Explanation:
given data
sum = $500,000
rate = 12% =0.12
total time = 10 year
solution
as present value After 2 years from now is $500,000
so time period is now = 8 year ( 10 - 2 )
so we apply future value formula that is
Future value = present value ×
............1
put here value we get
Future value = $500,000 ×
Future value = $500,000 × 2.476
Future value = $1,238,000
so investment 10 years from now is $1,238,000
.
Answer:
the minimum shaft diameter is 35.026 mm
the maximum shaft diameter is 35.042mm
Explanation:
Given data;
D-maximum = 35.020mm and d-minimum = 35.000mm
we have to go through Tables "Descriptions of preferred Fits using the Basic Hole System" so from the table, locational interference fits H7/p6
so From table, Selection of International Trade Grades metric series
the grade tolerance are;
ΔD = IT7(0.025 mm)
Δd = IT6(0.016 mm)
Also from Table "Fundamental Deviations for Shafts" metric series
Sf = 0.026
so
D-maximum
Dmax = d + Sf + Δd
we substitute
Dmax = 35 + 0.026 + 0.016
Dmax = 35.042 mm
therefore the maximum diameter of shaft is 35.042mm
d-minimum
Dmin = d + Sf
Dmin = 35 + 0.026
Dmin = 35.026 mm
therefore the minimum diameter of shaft is 35.026 mm
Answer:
Explanation:
Since there are six points, the minimum distance from all points would be the centroid of polygon formed by A,B,C,D,E,F
To find the coordinates of centroid of a polygon we use the following formula. Let A be area of the polygon.
where i=1 to N-1 and N=6
A area of the polygon can be found by the following formula
where i=1 to N-1
![A=\frac{1}{2}[ (x_{1} y_{2} -x_{2} y_{1})+ (x_{2} y_{3} -x_{3} y_{2})+(x_{3} y_{4} -x_{4} y_{3})+(x_{4} y_{5} -x_{5} y_{4})+(x_{5} y_{6} -x_{6} y_{5})]](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B1%7D%7B2%7D%5B%20%28x_%7B1%7D%20%20y_%7B2%7D%20-x_%7B2%7D%20%20y_%7B1%7D%29%2B%20%28x_%7B2%7D%20%20y_%7B3%7D%20-x_%7B3%7D%20%20y_%7B2%7D%29%2B%28x_%7B3%7D%20%20y_%7B4%7D%20-x_%7B4%7D%20%20y_%7B3%7D%29%2B%28x_%7B4%7D%20%20y_%7B5%7D%20-x_%7B5%7D%20%20y_%7B4%7D%29%2B%28x_%7B5%7D%20%20y_%7B6%7D%20-x_%7B6%7D%20%20y_%7B5%7D%29%5D)
A=0.5[(20×25 -25×15) +(25×32 -13×25)+(13×21 -4×32)+(4×8 -18×21)+(18×14 -25×8)
A=225.5 miles²
Now putting the value of area in Cx and Cy
![C_{x} =\frac{1}{6A}[ [(x_{1}+x_{2})(x_{1} y_{2} -x_{2} y_{1})]+ [(x_{2}+x_{3})(x_{2} y_{3} -x_{3} y_{2})]+[(x_{3}+x_{4})(x_{3} y_{4} -x_{4} y_{3})]+[(x_{4}+x_{5})(x_{4} y_{5} -x_{5} y_{4})]+[(x_{5}+x_{6})(x_{5} y_{6} -x_{6} y_{5})]]](https://tex.z-dn.net/?f=C_%7Bx%7D%20%3D%5Cfrac%7B1%7D%7B6A%7D%5B%20%5B%28x_%7B1%7D%2Bx_%7B2%7D%29%28x_%7B1%7D%20%20y_%7B2%7D%20-x_%7B2%7D%20%20y_%7B1%7D%29%5D%2B%20%5B%28x_%7B2%7D%2Bx_%7B3%7D%29%28x_%7B2%7D%20%20y_%7B3%7D%20-x_%7B3%7D%20%20y_%7B2%7D%29%5D%2B%5B%28x_%7B3%7D%2Bx_%7B4%7D%29%28x_%7B3%7D%20%20y_%7B4%7D%20-x_%7B4%7D%20%20y_%7B3%7D%29%5D%2B%5B%28x_%7B4%7D%2Bx_%7B5%7D%29%28x_%7B4%7D%20%20y_%7B5%7D%20-x_%7B5%7D%20%20y_%7B4%7D%29%5D%2B%5B%28x_%7B5%7D%2Bx_%7B6%7D%29%28x_%7B5%7D%20%20y_%7B6%7D%20-x_%7B6%7D%20%20y_%7B5%7D%29%5D%5D)
putting the values of x's and y's you will get

For Cy
![C_{y} =\frac{1}{6A}[ [(y_{1}+y_{2})(x_{1} y_{2} -x_{2} y_{1})]+ [(y_{2}+y_{3})(x_{2} y_{3} -x_{3} y_{2})]+[(y_{3}+y_{4})(x_{3} y_{4} -x_{4} y_{3})]+[(y_{4}+y_{5})(x_{4} y_{5} -x_{5} y_{4})]+[(y_{5}+y_{6})(x_{5} y_{6} -x_{6} y_{5})]]](https://tex.z-dn.net/?f=C_%7By%7D%20%3D%5Cfrac%7B1%7D%7B6A%7D%5B%20%5B%28y_%7B1%7D%2By_%7B2%7D%29%28x_%7B1%7D%20%20y_%7B2%7D%20-x_%7B2%7D%20%20y_%7B1%7D%29%5D%2B%20%5B%28y_%7B2%7D%2By_%7B3%7D%29%28x_%7B2%7D%20%20y_%7B3%7D%20-x_%7B3%7D%20%20y_%7B2%7D%29%5D%2B%5B%28y_%7B3%7D%2By_%7B4%7D%29%28x_%7B3%7D%20%20y_%7B4%7D%20-x_%7B4%7D%20%20y_%7B3%7D%29%5D%2B%5B%28y_%7B4%7D%2By_%7B5%7D%29%28x_%7B4%7D%20%20y_%7B5%7D%20-x_%7B5%7D%20%20y_%7B4%7D%29%5D%2B%5B%28y_%7B5%7D%2By_%7B6%7D%29%28x_%7B5%7D%20%20y_%7B6%7D%20-x_%7B6%7D%20%20y_%7B5%7D%29%5D%5D)
putting the values of x's and y's you will get

So coordinates for the fire station should be (15.36,22.55)
120 volt divided by 22 ampere
= 5.4545454545455 ohm (Ω)
P = V × I
= 120 volt × 22 ampere
= 2640 watt (W)