Answer:
Kc = 2.34 mol*L
Explanation:
The calculation of the Kc of a reaction is performed using the values of the concentrations of the participants in the equilibrium.
A + B ⇄ C + D
Kc = [C] * [D] / [A] * [B]
According to the reaction
Kc = [SO2]^2 * [O2]^2 / [SO3]^2
Knowing the 0.900 mol of SO3 is placed in a 2.00-L it means we have a 0.450 mol/L of SO3
0.450 --> 0 + 0 (Beginning of the reaction)
0.260 --> 0.260 + 0.130 (During the reaction)
0.190 --> 0.260 + 0.130 (Equilibrium of the reaction)
Kc = [0.260]^2 + [0.130]^2 / [0.190]^2
Kc = 2.34 mol*L
Answer:
120g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Sn + 2HF —> SnF2 + H2
Next, we shall determine the number of mole of HF needed to react with 3 moles of Sn.
From the balanced equation above, 1 mole of Sn reacted with 2 moles of HF.
Therefore, 3 moles of Sn will react with = 3 x 2 = 6 moles of HF.
Finally, we shall convert 6moles of HF to grams
This is illustrated below:
Number of mole of HF = 6moles
Molar Mass of HF = 1 + 19 = 20g/mol
Mass of HF =..?
Mass = number of mole x molar Mass
Mass of HF = 6 x 20
Mass of HF = 120g
Therefore, 120g of HF is needed to react with 3 moles of Sn
Answer:
The atomic mass of phosphorus is 29.864 amu.
Explanation:
Given data:
Atomic mass of phosphorus = ?
Percent abundance of P-29 = 35.5%
percent abundance of P-30 = 42.6%
Percent abundance of P-31 = 21.9%
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass / 100
Average atomic mass = (29×35.5)+(30×42.6) + (31×21.9) /100
Average atomic mass = 1029.5 + 1278 + 678.9/ 100
Average atomic mass = 2986.4 / 100
Average atomic mass = 29.864 amu.
The atomic mass of phosphorus is 29.864 amu.
Answer:
0.13 M
Explanation:
The reaction equation is;
NaOH(aq) + KHC8H4O4(aq) ------> KNaC8H4O4(aq) + H2O(l)
Molar mass of KHP = 204.22 g/mol
Amount of KHP= mass/ molar mass = 0.3365 g/204.22 g/mol = 1.65 × 10^-3 moles
n= CV
Where;
C= concentration
V= volume in dm^3
n= number of moles
C= n/V = 1.65 × 10^-3 moles × 1000/250 = 6.6 × 10^-3 M
If 1 mole of KHP reacts with 1 mole of NaOH
1.65 × 10^-3 moles of KHP will react with 1.65 × 10^-3 moles of NaOH
From
n= CV
We have that only 12.44 ml of NaOH reacted
C= n/V = 1.65 × 10^-3 moles × 1000/12.44
C= 0.13 M
At the equivalence point, the KHP solution turned light pink.
Answer:
it's got to do something with milk I guess it's the sugary substance found in milk and it's a compound