Answer: D(t)= 50(4/5)^t
Explanation: If 1/5 of the temperature difference is lost each minute, that means 4/5 of the difference remains each minute. So each minute, the temperature difference is multiplied by a factor of 4/5 (or 0.8).
If we start with the initial temperature difference, 50° Celsius, and keep multiplying by 4/5, this function gives us the temperature difference t minutes after the cake was put in the cooler.
Assuming this coin is on earth and that it wasn’t dropped forcefully:
Use the formula d = 1/2at^2. Rewriting using a=g and solving for height h gets us h = 1/2(9.8)t^2.
In this case that would get that the change in height h is 0.5(9.8)(0.3^2) = 0.441 m.
Answer:
Incomplete question: "Each block has a mass of 0.2 kg"
The speed of the two-block system's center of mass just before the blocks collide is 2.9489 m/s
Explanation:
Given data:
θ = angle of the surface = 37°
m = mass of each block = 0.2 kg
v = speed = 0.35 m/s
t = time to collision = 0.5 s
Question: What is the speed of the two-block system's center of mass just before the blocks collide, vf = ?
Change in momentum:




It is neccesary calculate the force:

Here, g = gravity = 9.8 m/s²


Only the tiny command module survives to return to Earth. The Saturn V rocket's first stage carries 203,400 gallons (770,000 liters) of kerosene fuel and 318,000 gallons (1.2 million liters) of liquid oxygen needed for combustion