Answer:
1.785 m/s
Explanation:
The momentum can be calculated using the expression below
M1 *V1 + M2 * V2 = (M1+M2) V3
M1= mass of van=9000 kg
M2= mass of car= 850kg
V3= velocity of entangled car
V1= Velocity of the van= 0
V2= velocity of the car= 5 m/ s
Substitute the values
(900×0) + (500×5)=( 900+500)× V3
2500=1400 V3
V3=2500/1400
V3= 1.785 m/s
Hence, velocity of the entangled cars after collision is 1.785 m/s
Answer:
The change in momentum is
Explanation:
From the question we are told that
The mass of the probe is 
The location of the prob at time t = 22.9 s is 
The momentum at time t = 22.9 s is
The net force on the probe is 
Generally the change in momentum is mathematically represented as

The initial time is 22.6 s
The final time is 22.9 s
Substituting values

Answer:
The correct answer is All of the above.
Explanation:
Answer:
a).
kJ/kg
b).
kJ/kg-K
Explanation:
a). The energy rate balance equation in the control volume is given by




kJ/kg
b). Entropy produced from the entropy balance equation in a control volume is given by





kJ/kg-K
Answer: The Electrostatic force of attraction or repulsion between two charges shows that the Newton's third law applies to electrostatic forces.
Explanation: Consider two Oppositely charged charges separated by distance d.
The electrostatic force exerted by charge 1 on charge 2 is.
By Coulomb's Law :
F1 = k
.....................................(1)
The electrostatic force exerted by charge 2 on charge 1 is.
F2 = - k
................................. (2)
negative sign shows that force are in opposite direction.
From Equation 1 and 2
F1 = - F2
Which implies Newton Third law.