Answer:
I don't think any options are correct.
Explanation:
When solved for y the process goes as follows:
5x+ 8y = 16
5x + 8y - 5x = 16 - 5x
8y = 16 - 5x
8y/8 = (16-5x)/8
y = 2- (5/8)x
The net force on the box parallel to the plane is
∑ F[para] = mg sin(24°) = ma
where mg is the weight of the box, so mg sin(24°) is the magnitude of the component of its weight acting parallel to the surface, and a is the box's acceleration.
Solve for a :
g sin(24°) = a ≈ 3.99 m/s²
The box starts at rest, so after 7.0 s it attains a speed of
(3.99 m/s²) (7.0 s) ≈ 28 m/s
When the ion concentrations in the cathode half-cell are increased by a factor of 10, the change in the cell voltage is ln10 times greater. This comes from the Nernst equation. Use variation to solve for the cell voltage in terms of the initial cell voltage before increasing the ion concentrations by 10.
Answer:
The question was incomplete. Here is the complete question.
Explanation:
A helium-filled balloon escapes a child’s hand at sea level and 20.0C. When it reaches an altitude of 3600 m, where the temperature is 5.0∘C and the pressure only 0.68 atm, how will its volume compare to that at sea level?
The ideal gas equation:

P = absolute pressure
V = Volume of a gas
n = no of moles of a gas
R = ideal gas constant
T = Absolute temperature of a gas
For initial and final states:

= 1.4