When you bring two objects of different temperature together, energy will always be transferred from the hotter to the cooler object. The objects will exchange thermal energy, until thermal equilibrium<span> is reached, i.e. until their temperatures are equal. We say that </span>heat<span>flows from the hotter to the cooler object. </span><span>Heat is energy on the move.</span> <span>
</span>Units of heat are units of energy. The SI unit of energy is Joule. Other often encountered units of energy are 1 Cal = 1 kcal = 4186 J, 1 cal = 4.186 J, 1 Btu = 1054 J.
Without an external agent doing work, heat will always flow from a hotter to a cooler object. Two objects of different temperature always interact. There are three different ways for heat to flow from one object to another. They are conduction, convection, and radiation.
Answer:
See explanation
Explanation:
The question is incomplete because the image of the alcohol is missing. However, I will try give you a general picture of the reaction known as hydroboration of alkenes.
This reaction occurs in two steps. In the first step, -BH2 and H add to the same face of the double bond (syn addition).
In the second step, alkaline hydrogen peroxide is added and the alcohol is formed.
Note that the BH2 and H adds to the two atoms of the double bond. The final product of the reaction appears as if water was added to the original alkene following an anti-Markovnikov mechanism.
Steric hindrance is known to play a major role in this reaction as good yield of the anti-Markovnikov like product is obtained with alkenes having one of the carbon atoms of the double bond significantly hindered.
Saturated Solution: A solution with solute that dissolves until it is unable to dissolve anymore, leaving the undissolved substances at the bottom. Unsaturated Solution: A solution ( with less solute than the saturated solution )that completely dissolves, leaving no remaining substances. Supersaturated Solution.
To determine the mass of oxygen per gram of sulfur for sulfur dioxide, we simply obtain the ratio of the mass of oxygen and the mass of sulfur produced from the decomposition of sulfur dioxide. All other values given in the problem statement above are just to confuse us that the question is a difficult one. We do as follows:
mass of oxygen per gram sulfur = 3.45 g / 3.46 g
mass of oxygen per gram sulfur = 0.9971 g O2 / g S
Answer:
The answer is = LiCl ..............