1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
3 years ago
15

1. A runner drops her phone as she is running at a constant speed of 3 miles per hour from point A to point B in a park. Describ

e the motion of the phone as it is observed by someone sitting on a bench at the park.​
Physics
1 answer:
joja [24]3 years ago
5 0

Answer:

Let's define the point A as our zero in the x-axis.

As the phone drops, it keeps the horizontal velocity that it had before, so the horizontal velocity is:

Vx = 3 mi/h.

Now, the only force acting on the phone is the gravitational force that acts in the vertical axis, then we have:

Ay = -g

where g = 9.8 m/s^2

It is dropped, so we do not have a vertical initial velocity, then for the vertical velocity we should integrate over time:

Vy = -g*t

And for the position again, we integrate over time, but now we have an initial position H, that is the height at which the phone is dropped.

Py = -(1/2)*g*t^2 + H

And the horizontal position can be found by integrating over time the horizontal velocity.

Px = (3mi/h)*t

This will be the two equations that describe the motion of the phone, and we can not solve it further because we do not know the initial height of the phone.

But in general, we have a linear equation in the horizontal axis and a quadratic equation with a negative leading coefficient in the vertical axis.

Position(t) = ( (3mi/h)*t,  -(1/2)*g*t^2 + H)

You might be interested in
The amount of fluid displaced by a submerged object depends on its
Daniel [21]
The amount of fluid displaced by a submerged object depends on its volume.
7 0
3 years ago
Read 2 more answers
One gallon of paint (volume = 3.79 X 10-???? m3) covers an area of 25.0 m2. What i the thickne s of the fresh paint on the wall?
Drupady [299]

Answer:

Explanation:

Given

Volume of paint is V=3.79\times 10^{-3}\ m^3

Area of cover A=25\ m^2

Suppose paint to be a rectangular box with thickness t and volume V

therefore we can write as

V=A\times t

t=\frac{V}{A}

t=\frac{3.79\times 10^{-3}}{25}

t=1.516\times 10^{-3}\ m

t=1.516\ mm  

6 0
3 years ago
5/6 When switched on, the grinding machine accelerates from rest to its operating speed of 3450 rev/min in 6 seconds. When switc
ludmilkaskok [199]

Answer:

Δθ₁ =  172.5 rev

Δθ₁h =  43.1 rev

Δθ₂ =   920 rev

Δθ₂h = 690 rev

Explanation:

  • Assuming uniform angular acceleration, we can use the following kinematic equation in order to find the total angle rotated during the acceleration process, from rest to its operating speed:

       \Delta \theta = \frac{1}{2} *\alpha *(\Delta t)^{2}  (1)  

  • Now, we need first to find the value of  the angular acceleration, that we can get from the following expression:

       \omega_{f1}  = \omega_{o} + \alpha * \Delta t  (2)

  • Since the machine starts from rest, ω₀ = 0.
  • We know the value of ωf₁ (the operating speed) in rev/min.
  • Due to the time is expressed in seconds, it is suitable to convert rev/min to rev/sec, as follows:

       3450 \frac{rev}{min} * \frac{1 min}{60s} = 57.5 rev/sec (3)

  • Replacing by the givens in (2):

       57.5 rev/sec = 0 + \alpha * 6 s  (4)

  • Solving for α:

       \alpha = \frac{\omega_{f1}}{\Delta t} = \frac{57.5 rev/sec}{6 sec} = 9.6 rev/sec2 (5)

  • Replacing (5) and Δt in (1), we get:

       \Delta \theta_{1} = \frac{1}{2} *\alpha *(\Delta t)^{2} = \frac{1}{2} * 6.9 rev/sec2* 36 sec2 = 172.5 rev  (6)

  • in order to get the number of revolutions during the first half of this period, we need just to replace Δt in (6) by Δt/2, as follows:

       \Delta \theta_{1h} = \frac{1}{2} *\alpha *(\Delta t/2)^{2} = \frac{1}{2} * 6.9 rev/sec2* 9 sec2 = 43.2 rev  (7)

  • In order to get the number of revolutions rotated during the deceleration period, assuming constant deceleration, we can use the following kinematic equation:

       \Delta \theta = \omega_{o} * \Delta t + \frac{1}{2} *\alpha *(\Delta t)^{2}  (8)

  • First of all, we need to find the value of the angular acceleration during the second period.
  • We can use again (2) replacing by the givens:
  • ωf =0 (the machine finally comes to an stop)
  • ω₀ = ωf₁ = 57.5 rev/sec
  • Δt = 32 s

       0 = 57.5 rev/sec + \alpha * 32 s  (9)

  • Solving for α in (9), we get:

       \alpha_{2}  =- \frac{\omega_{f1}}{\Delta t} = \frac{-57.5 rev/sec}{32 sec} = -1.8 rev/sec2 (10)

  • Now, we can replace the values of ω₀, Δt and α₂ in (8), as follows:

        \Delta \theta_{2}  = (57.5 rev/sec*32) s -\frac{1}{2} * 1.8 rev/sec2\alpha *(32s)^{2} = 920 rev (11)

  • In order to get finally the number of revolutions rotated during the first half of the second period, we need just to replace 32 s by 16 s, as follows:
  • \Delta \theta_{2h}  = (57.5 rev/sec*16 s) -\frac{1}{2} * 1.8 rev/sec2\alpha *(16s)^{2} = 690 rev (12)
7 0
3 years ago
What is the average speed of a kangaroo that hops 60 m in 5 s ?
jok3333 [9.3K]
The formula for average speed is
v_{avg}= \frac{total distance}{total time}
So we can just substitute our data.
v_{avg}= \frac{60}{5}=12 \frac{m}{s} - its the result
6 0
3 years ago
Read 2 more answers
Process of changing a liquid into a gas
vazorg [7]
Boiling. The temperature at which a liquid begins to boil is called the <span>boiling point.</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • How would the attractive force between two spheres change if the mass of one sphere was doubled?
    11·1 answer
  • How much heat is released when 35kg of water freezes?
    15·1 answer
  • Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed
    13·2 answers
  • A supertanker filled with oil has a total mass of 6.1 x108 kg. If the dimensions of the ship are those of a rectangular box 300
    5·1 answer
  • A wire runs left to right and carries a current in the direction shown. What is the direction of the magnetic field at point Z?
    11·2 answers
  • Two charged bees land simultaneously on flowers that are separated by a finite distance. For a few moments, the charged bees res
    9·1 answer
  • Discuss velocity by providing at least one example and explain why velocity is either a scalar or vector quantity.
    11·2 answers
  • What problem can you imagine coming from using digitized<br> DNA storage?
    11·1 answer
  • How is high speed internet transmitted around the world?
    15·1 answer
  • Plz help ASAP I'll mark as brainliest ​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!