Answer:68.15m/s
Explanation:
<u><em>Given: </em></u>
v₁=15m/s
a=6.5m/s²
v₁=?
x=340m
<u><em>Formula:</em></u>
v₁²=v₁²+2a (x)
<u>Set up:</u>
=
<h2><u><em>
Solution:</em></u></h2><h2><u><em>
68.15m/s</em></u></h2>
<u />
I would choose B. exosphere. Astronomers study outer space, planets and ect.
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier
Answer: D <u>(chemical</u> -> <u>heat</u> -> <u>mechanical</u>)
In automobile engines the petrol/diesel fuel enter in to the engine cylinder, due to spark at the end of the compression, fuel burnt increase the temperature and pressure, develops heat <em>(chemical energy -> heat energy). </em><em>This heat energy acts on a piston develops the work on the crankshaft </em><em>( Heat energy -> Mechanical energy)</em><em>. </em>