<span>The number next to the simbol of the element ions (as a superscript) means the number of charges of the ion. For example N (+),, where (+) is a superscript means that the charge of the ion is 1+. S(2-), where (2-) is a superscript, means that the charge of the ion is (2-). OH (-), where (-) is a superscript, means that the charge of OH ion is (1-) . </span>
I’m not good at this but I’m guessing it’ll be the first one!
It always has birds, it's in the South.
Step 1
The osmotic pressure is calculated as follows:

-------------
Step 2
<em>Information provided:</em>
The mass of solute = 13.6 g
Volume of solution = 251 mL
Absolute temperature = T = 298 K
The molar mass of solute = M = 354.5 g/mol
-------------
Step 3
Procedure:
1 L = 1000 mL => Volume = 251 mL x (1 L/1000 mL) = 0.251 L
---
C = moles of solute/volume of solution (L)
C = mass of solute/(molar mass x Volume (L))
C = 13.6 g/(354.5 g/mol x 0.251 L)
C = 0.153 mol/L
---
π = C x R x T
π = 0.153 mol/L x 0.082 atm L/mol K x 298 K
π = 3.74 atm
Answer: π = 3.74 atm
Answer:
7.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2KClO₃ —> 2KCl + 3O₂
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ produced by the decomposition of 5 moles of KClO₃. This can be obtained as follow:
From the balanced equation above,
2 moles of KClO₃ decomposed to produce 3 moles of O₂.
Therefore, 5 moles of KClO₃ will decompose to produce = (5 × 3)/ 2 = 7.5 moles of O₂.
Thus, 7.5 moles of O₂ were obtained from the reaction.