Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

Answer:
During a typical school day all forms of eneergy is being utilised and also transfer of energy takes place from one form to another.
Explanation:
Chemical energy- A bunsen burner burning a beaker filled with water.
Heat energy- The water in the beaker absorbing the heat from the burner.
Electrical energy- Running Fans and lights in a classroom by switches.
Solar energy- Solar energy harnessed by solar panels to run the fans and lights by converting it into electrical energy.
Potential energy- A ball being held by a student at a certain height possesses energy due to gravity.
Kinetic energy- The same ball being left by the boy from a certain height produces kinetic energy
There are none on the list you included with your question.
The acceleration due to gravity on Earth is 9.8 m/s per second.