Osmotic pressure is the pressure that would have to be applied to a pure solvent to prevent it from passing into a given solution by osmosis.
That can be mathematical computed from the expression:
Osmotic pressure=C×R×T
Where,
C= Concentration
R=Gas constant
T=Temperature
Concentration=Number of moles of solute/Volume(L)
=0.005*1000/100
=0.05
R= 0.08206 atm L/mol K
T=25+273
=298
Osmotic pressure= 0.05×0.08206×298
=1.2 atm
Answer:
In this chemical reaction, which is considered irreversible, that is why the reaction arrow is ONE and unidirectional and not two in opposite directions, which means reversibility of the reaction.
In summary, if we look closely at the reaction, we observe that the stoichiometric values are balanced in the reaction, therefore there is THE SAME AMOUNT OF REAGENTS AS PRODUCTS.
This phenomenon has to be met in ALL CHEMICAL REACTIONS, the stoichiometric balance is essential for this reaction to be well expressed.
Why is stoichiometric balance so important? Why we indicate that we have the same amount of reagents as products, means that NOTHING IS LOST, EVERYTHING IS TRANSFORMED in the matter of the organic compounds that reacted.
Explanation:
Although if we observe the stoichiometric values well they are not correct with respect to oxygen, therefore it would be necessary to correct that in the chemical reaction, but above we briefly explain why the balancing of the reactions and the relationship they have with the conservation of the mass.
The law of conservation of mass indicates that mass is never lost, but is transformed, like energy, considering that it happens in terrestrial life.
Answer:
Be yourself, be kind, cute, funny, and yeah
Explanation:
Answer : Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
Explanation :
The given molecule is
.
Three types of inter-molecular forces are present in this molecule which are Hydrogen-bonding, Dipole-dipole attraction and London-dispersion force.
- Hydrogen-bonding : when the partial positive end of hydrogen is bonded with the partial negative end of another molecule like, oxygen, nitrogen, etc.
- Dipole-dipole attraction : When the partial positively charged part of the molecule is interact with the partial negatively charged part of the molecule. For example : In case of HCl.
- London-dispersion force : This force is present in all type of molecule whether it is a polar or non-polar, ionic or covalent. For example : In case of Br-Br , F-F, etc
Hydrogen-bonding is present between the oxygen and hydrogen molecule.
Dipole-dipole forces is present between the carbon and oxygen molecule.
London-dispersion forces is present between the carbon and carbon molecule.