It depends on the environment around you ... the number and size of
the masses around you, and your distance from their center of mass.
If you happen to be on the surface of the Earth, then
g = 9.8 m/s²
or
g = 9.8 newton/kilogram .
It's different on other planets. Be sure to look it up
before you leave, so you'll know what to expect.
Answer:
a= (-g) from the moment the ball is thrown, until it stops in the air.
a = (0) when the ball stops in the air.
a = (g) since the ball starts to fall.
Explanation:
The acceleration is <em>(-g)</em> <em>from the moment the ball is thrown, until it stops in the air</em> because the movement goes in the opposite direction to the force of gravity. In the instant <em>when the ball stops in the air the acceleration is </em><em>(0)</em> because it temporarily stops moving. Then, <em>since the ball starts to fall, the acceleration is </em><em>(g)</em><em> </em>because the movement goes in the same direction of the force of gravity
Inertia is the correct answer!
Answer:
(a). 12 plants
(b). 3171 $
Explanation:
(a)first convert units of 100 billion kWh/year into Watts(W)
also convert the units of 1000 MW into Watts(W)
1 billion = 10^9
1 year = 365*24 = 8760 hrs
so
100 billion kWh/year = 1
=
W
1000 MW = 
no. of plants =
= 11.4
So 12 plants required
(b)
savings = unit price*total units
= 
= 3170.9 =3171 $
This is the answer just double it