Answer:
the chemical formula of magnesium hydroxide is Mg(OH)2
Answer: (Structure attached).
Explanation:
This type of reaction is an aromatic electrophilic substitution. The overall reaction is the replacement of a proton (H +) with an electrophile (E +) in the aromatic ring.
The aromatic ring in p-fluoroanisole has two sustituents, an <u>halogen</u> and a <u>methoxy group</u>, which are <em>ortho-para</em> directing substituents.
Aryl sulfonic acids are easily synthesized by an electrophilic substitution reaction aromatic using <u>sulfur trioxide as an electrophile</u> (very reactive).
The reaction occurs in three steps:
- The attack on the electrophile forms the sigma complex.
- The loss of a proton regenerates an aromatic ring.
- The sulfonate group can be protonated in the presence of a strong acid (H₂SO₄).
Normally, a mixture of <em>ortho-para</em> substituted products would be obtained. However, since both <em>para</em> positions are occupied, only the <em>ortho </em>substituted product is obtained here.
Answer:
6.4 g BaSO₄
Explanation:
You have been given the molarity and the volume of the solution. To find the mass of the solution, you need to (1) find the moles BaSO₄ (via the molarity ratio) and then (2) convert moles BaSO₄ to grams BaSO₄ (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given values.
Molarity (mol/L) = moles / volume (L)
(Step 1)
55 mL / 1,000 = 0.055 L
Molarity = moles / volume <----- Molarity ratio
0.5 (mol/L) = moles / 0.055 L <----- Insert values
0.0275 = moles <----- Multiply both sides by 0.055
(Step 2)
Molar Mass (BaSO₄): 137.33 g/mol + 32.065 g/mol + 4(15.998 g/mol)
Molar Mass (BaSO₄): 233.387 g/mol
0.0275 moles BaSO₄ 233.387 g
--------------------------------- x ------------------- = 6.4 g BaSO₄
1 mole
Answer:
coooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooool lol
Explanation: