The northward components of the resultant displacement is 40.96 m and the westward components of the resultant displacement of the bird from its nest is 28.68 m.
<h3>
Displacement of the bird</h3>
The displacement of the bird is the change in the position of the bird.
<h3>Vertical component of the bird's displacement </h3>
Vy₁ = -25 m x sin(55)
Vy₁ = -20.48 m
Vy₂ = 75 m x sin(55)
Vy₂ = 61.44 m
Total vertical displacement = 61.44 m - 20.48 m = 40.96 m
<h3>Horizontal component of the bird's displacement </h3>
Vx₁ = -25 m x cos(55)
Vx₁ = -14.34 m
Vx₂ = 75 m x cos(55)
Vx₂ = 43.02 m
Total horizontal displacement = 43.02 m - 14.34 m = 28.68 m
Learn more about displacement here: brainly.com/question/2109763
#SPJ1
A sound wave<span> in a steel rail </span>has<span> a </span>frequency of<span> 620 </span>Hz<span> and a </span>wavelength<span> of 10.5 ... Find the </span>speed<span> of </span>a wave<span> with a </span>wavelength of 5<span> m and a </span>frequency of<span> 68 </span>Hz<span>.</span>
The answer is 1,600 J.
A work (W) can be expressed as a product of a force (F) and a
distance (d):
W = F · d<span>
We have:
W = ?
F = 20 N = 20 kg*m/s</span>²
d = 80 m
_____
W = 20 kg*m/s² * 80 m
W = 20 * 80 kg*m/s² * m
W = 1600 kg*m²/s²
W = 1600 J
Answer:
relates the electric field at points on a closed surface to the net charge enclosed by that surface.
Explanation:
Gauss Law states that overall electric flux of a closed surface is equivalent right to charge enclosed which is divided by the permittivity. In other words Gauss Law stress that
net electric flux that pass through an hypothetical closed surface is equivalent to overall electric charge present within that closed surface.
The Gauss law can be expressed mathematically as
ϕ = (Q/ϵ0)
Q = total charge within the surface,
ε0 = the electric constant