It shouldn't have any lone pairs since it is a tetrahedral structure. Ge has 4 valence electrons. Each H has 1 valence electron. Therefore, each H valence electron will pair with each valence electron on Ge.
Answer:
A. ocean winds can carry moisture with them and can bring rain and fog over inland areas
Explanation:
It's "A. ocean winds can carry moisture with them and can bring rain and fog over inland areas' for K12 (OHVA to be exact)
Answer:
Explanation:
Your strategy here will be to
use the chemical formula of carbon dioxide to find the number of molecules of
CO
2
that would contain that many atoms of oxygen
use Avogadro's constant to convert the number of molecules to moles of carbon dioxide
use the molar mass of carbon dioxide to convert the moles to grams
So, you know that one molecule of carbon dioxide contains
one atom of carbon,
1
×
C
two atoms of oxygen,
2
×
O
This means that the given number of atoms of oxygen would correspond to
4.8
⋅
10
22
atoms O
⋅
1 molecule CO
2
2
atoms O
=
2.4
⋅
10
22
molecules CO
2
Now, one mole of any molecular substance contains exactly
6.022
⋅
10
22
molecules of that substance -- this is known as Avogadro's constant.
In your case, the sample of carbon dioxide molecules contains
2.4
⋅
10
22
molecules CO
2
⋅
1 mole CO
2
6.022
⋅
10
23
molecules CO
2
=
0.03985 moles CO
2
Finally, carbon dioxide has a molar mass of
44.01 g mol
−
1
, which means that your sample will have a mass of
0.03985
moles CO
2
⋅
44.01 g
1
mole CO
2
=
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
∣
∣
a
a
1.8 g
a
a
∣
∣
−−−−−−−−−
The answer is rounded to two sig figs, the number of sig figs you have for the number of atoms of oxygen present in the sample.
Chromatography is used in purification. Drugs analysts may use the technique to separate the active molecule in a drug molecule, for efficacy or toxicity analysis, from the other drug components.
Explanation:
Chromatography is used to separate a mixture of different components based on the size of their molecules. In liquid chromatography, the mixture is dissolved in a solvent that acts as the mobile phase and then passed along a stationary phase with different kinds of pores, As the mixture passes through the pores, their different components are separated because they take different times to pass through the stationary phase because of their different rates in passing through the pores.
In gas chromatography, a gas is used as a mobile phase while a liquid is used as the stationary phase.
Learn More:
For more on chromatography check out;
brainly.com/question/13232854
#LearnWithBrainly
Answer:
2.91
Explanation:
pH=-log(H3O+)
- Hope that helps! Please let me know if you need further explanation.