The total work done of 0.018 joules is needed to move the charges apart and double the distance between them.
We have two electric charges q(A) = 1μc and q(B) = -2μc kept at a distance 0.5 meter apart.
We have to calculate much work is needed to move the charges apart and double the distance between them.
<h3>What s the formula to calculate the Potential Energy of a system of two charges (say 'q' and 'Q') separated by a distance 'r' ?</h3>
The potential energy of the system of two charges separated by a distance is given by -

In order to solve this question, it is important to remember the work - energy theorem which states -
"The change in the energy of the body is equal to work done on it"
Hence, using this work -energy theorem in the question given to us we get -

In our case -

W = 0.018 joules
Hence, the total work done should be 0.018 joules.
To solve more question on potential energy, visit the link below -
brainly.com/question/15014856
#SPJ4
Answer:
A charged object in an electric field experiences a force due to the field. The electric field strength, E, at a point in the field is defined as the force per unit charge on a positive test charge placed at that point.
Explanation:
Answer:
16m/s
Explanation:



Therefore, the speed after 8 seconds is 16m/s
Answer:
Object C has the most potential energy.
Between A and B, we do not know which has more potential energy.
Explanation:
We know the object with the most potential energy and this is the object at C.
Potential energy is the energy due to the position of a body above the ground surface.
The higher a body is above ground, the more its potential energy.
Potential energy = mass x acceleration due to gravity x height
So;
Object C has the most potential energy.
Between A and B, we do not know which has more potential energy.
This is because, the height and mass of the objects are not quantified using numbers.
Potential energy is a function of mass and height and acceleration due to gravity but acceleration due gravity is a constant.
Answer:
Magnetic field, B = 
Explanation:
It is given that,
The amplitude of an electromagnetic wave, E = 470 V/m
We need to find the amplitude of the corresponding magnetic field. The relation between electric and magnetic field is :

Where
c is the speed of light

B = 0.00000156

So, the amplitude of the corresponding magnetic field is
. Hence, this is the required solution.