1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry_Shevchenko [17]
2 years ago
11

Calculate the electric charge of the glass ball

Physics
1 answer:
-Dominant- [34]2 years ago
4 0

Answer:

As per Coulomb's law we know that force between two charges is given as

F = \frac{kq_1q_2}{r^2}F=

r

2

kq

1

q

2

here we know that

q_1 = 2.5 \times 10^{-6} Cq

1

=2.5×10

−6

C

q_2 = -5.0 \times 10^{-6} Cq

2

=−5.0×10

−6

C

r = 0.0050 mr=0.0050m

now from above formula we will have

F = \frac{(9 \times 10^9)(2.5 \times 10^{-6})(5 \times 10^{-6})}{(0.0050)^2}F=

(0.0050)

2

(9×10

9

)(2.5×10

−6

)(5×10

−6

)

F = 4500 NF=4500N

so they will attract towards each other as they are opposite in nature with force F = 4500 N

You might be interested in
Calculate the acceleration of a 1000 kg car if the motor provides a small thrust of 1000 N and the static and dynamic friction c
grin007 [14]

Explanation :

It is given that,

Mass of the car, m = 1000 kg              

Force applied by the motor, F_A=1000\ N

The static and dynamic friction coefficient is, \mu=0.5

Let a is the acceleration of the car. Since, the car is in motion, the coefficient of sliding friction can be used. At equilibrium,

F_A-\mu mg=ma

\dfrac{F_A-\mu mg}{m}=a

a=\dfrac{1000-0.5(1000)(9.81)}{1000}

a=-3.905\ m/s^2

So, the acceleration of the car is -3.905\ m/s^2. Hence, this is the required solution.

6 0
2 years ago
Is it possible to have a charge of 5 x 10-20 C? Why?
ruslelena [56]

1) No

2) Yes

3) No

4) Equal and opposite

5) 32400 N

6) Repulsive

7) The electric force is 2.3\cdot 10^{39} times bigger than the gravitational force

Explanation:

1)

In nature, the minimum possible charge that an object can have is the charge of the electron, which is called fundamental charge:

e=1.6\cdot 10^{-19}C

Electrons are indivisible particles (they cannot be separated), this means that an object can have at least the charge equal to the charge of one electron (in fact, it cannot have a charge less than e, because it would meant that the object has a "fractional number" of electrons).

In this problem, the object has a charge of

Q=5\cdot 10^{-20}C

If we compare this value to e, we notice that Q, so no object can have a charge of Q.

2)

As we said in part 1), an object should have an integer number of electrons in order to be charged.

This means that the charge of an object must be an integer multiple of the fundamental charge, so we can write it as:

Q=ne

where

Q is the charge of the object

n is an integer multiple

e is the fundamental charge

Here we have

Q=2.4\cdot 10^{-18}C

Substituting the value of e, we find n:

n=\frac{Q}{e}=\frac{2.4\cdot 10^{-18}}{1.6\cdot 10^{-19}}=15

n is integer, so this value of the charge is possible.

3)

We now do the same procedure for the new object in this part, which has a charge of

Q=2.0\cdot 10^{-19}C

Again, the charge on this object can be written as

Q=ne

where

n is the number of electrons in the object

Using the value of the fundamental charge,

e=1.6\cdot 10^{-19}C

We find:

n=\frac{Q}{e}=\frac{2.0\cdot 10^{-19}}{1.6\cdot 10^{-19}}=1.25

n is not integer, so this value of charge is not possible, since an object cannot have a fractional number of electrons.

4)

To solve this part, we use Newton's third law of motion, which states that:

"When an object A exerts a force on an object B (Action force), then object B exerts an equal and opposite force on object A (reaction force)".

In this problem, we have two objects:

- A charge Q

- A charge 5Q

Charge Q exerts an electric force on charge 5Q, and we can call this action force. At the same time, charge 5Q exerts an electric force on charge Q (reaction force), and according to Newton's 3rd law, the two forces are equal and opposite.

5)

The magnitude of the electric force between two single-point charges is

F=k\frac{q_1 q_2}{r^2}

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the two charges

In this problem we have:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

r = 0.30 cm = 0.003 m is the separation

So, the electric force  between the two charges is

F=(9\cdot 10^9)\frac{(4.5\cdot 10^{-6})(7.2\cdot 10^{-6})}{(0.003)^2}=32400 N

6)

The electric force between two charged objects has direction as follows:

- If the two objects have charges of opposite signs (+ and -), the force between them is attractive

- If the two objects have charges of same sign (++ or --), the force between them is repulsive

In this problem, the two charges are:

q_1=+4.5\cdot 10^{-6}C is charge 1

q_2=+7.2\cdot 10^{-6}C is charge 2

We see that the two charges have same sign: therefore, the force between them is repulsive.

7)

The electric force between the proton and the electron in the atom can be written as

F_E=k\frac{q_1 q_2}{r^2}

where

q_1 = q_2 = e = 1.6\cdot 10^{-19}C is the magnitude of the charge of the proton and of the electron

r=5.3\cdot 10^{-11} m is the separation between them

So the force can be rewritten as

F_E=\frac{ke^2}{r^2}

The gravitational force between the proton and the electron can be written as

F_G=G\frac{m_p m_e}{r^2}

where

G is the gravitational constant

m_p = 1.67\cdot 10^{-27}kg is the proton mass

m_e=9.11\cdot 10^{-27}kg is the electron mass

Comparing the 2 forces,

\frac{F_E}{F_G}=\frac{ke^2}{Gm_p m_e}=\frac{(9\cdot 10^9)(1.6\cdot 10^{-19})^2}{(6.67\cdot 10^{-11})(1.67\cdot 10^{-27})(9.11\cdot 10^{-31})}=2.3\cdot 10^{39}

8 0
3 years ago
A fold is a _ in a rock , and a fault is a _in a rock?
777dan777 [17]
A geological fold<span> occurs when one or a stack of originally flat and planar surfaces, such as sedimentary strata, are bent or curved as a result of permanent deformation.

So A fold is a Bend? in a rock. Maybe.

</span>A fault<span> is a planar fracture or discontinuity in a volume of </span>rock<span>, across which there has been significant displacement as a result of </span>rock<span>-mass movement.</span>
3 0
2 years ago
Read 2 more answers
If the person drops box from 3.8 m how much energy is transferred from potential energy to kinetic energy
kotykmax [81]

Answer:

Kinetic energy

When work is done the energy is transferred from one type to another. This transferred energy may appear as kinetic energy.

For example, when you pedal your bicycle so that its speed increases, you are doing work to transfer chemical energy from your muscles to the kinetic energy of the bicycle.

Kinetic energy is the energy an object possesses by virtue of its movement. The amount of kinetic energy possessed by a moving object depends on the mass of the object and its speed. The greater the mass and the speed of the object the greater its kinetic energy.

The kinetic energy Ek of an object of mass m at a speed v is given by the relationship

{E_k} = \frac{1}{2}m{v^2}

m is the mass of the object in kilograms ( kg) and v is the speed of the object in metres per second ( m\,s^{-1}).

Explanation:

When work is done on an object it may also lead to energy being transferred to the object in the form of gravitational potential energy of the object.

Gravitational potential energy is the energy an object has by virtue of its position above the surface of the Earth. When an object is lifted, work is done. When work is done in raising the height of an object, energy is transferred as a gain in the gravitational potential energy of the object.

For example, suppose you lift a suitcase of mass m through a height h. The weight W of the suit case is a downward force of size mg. In lifting the suitcase, you would have to pull upwards on it with a force equal in size to its weight, mg.

Two suitcases. One has a green force arrow pointing up labelled F and a purple force arrow pointing down labelled 'Weight = mg'. The other case is raised by a height labelled h.

Suitcases with forces and height labelled

When this force (equal to the weight mg, but upwards) is applied to the suitcase over the distance h:

Work\,done=force\,\times\,distance\,upwards=mg\,\times\,h

This energy is transferred to potential energy when raising the object through a known height.

Energy = mass \times gravitational\,field\,strength \times height

E = m \times g \times h

This is the relationship used to calculate gravitational potential energy.

{E_p} = mgh

where m is the mass of the object in kilograms (kg), g is the gravitational field strength, (for positions near the surface of the Earth g = 9∙8 newtons per kilogram ( N kg ^{-1} and h is the height above the surface of the Earth in metres ( m).

8 0
3 years ago
Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweez
katrin [286]

Answer:

a= 4.4×10 m/s^2

Explanation:

pressure P  = E/c

Where, E = 100 W/m^2 intensity of light

c= speed of light  = 3×10^8 m/s

P = 1000/ 3×10^8

P = 3.33×10^(-6) Pa

Force F = P×A

  • P is the pressure and c= speed of light

F = 3.33×10^{-6}×6.65×10(-29)

= 2.22×10^{-6}

acceleration a  = F/m = 2.22×10^{-6}/ 5.10×10^{-27}

a= 4.4×10 m/s^2

4 0
3 years ago
Other questions:
  • A person takes a trip, driving with a constant speed of 94.5 km/h except for a 22.0 min rest stop. If the person's average speed
    12·1 answer
  • A dog has a mass of 20 kg. If the dog is pushed across the ice with a force of 40 N, what is its acceleration?
    9·1 answer
  • When a potential difference of 154 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge d
    10·1 answer
  • A water dwelling slug like animal
    14·2 answers
  • 3. Tyrone wants to determine how fast a bowling ball travels when it is bowled. He uses a stopwatch to
    9·1 answer
  • If a psychologist were to run an experiment measuring the effects of temperature on aggression the differing temperature would b
    13·1 answer
  • Is it ok as a headline story
    7·2 answers
  • A farsighted woman breaks her current eyeglasses and is using an old pair whose refractive power is 1.570 diopters. Since these
    12·1 answer
  • a jet fighter accelerates at 17.7 m/s^2 , increasing its velocity from 119 m/s to 233 m/s. how much time does that take?
    7·1 answer
  • In 1.0 second, a battery charger moves 0.50 C of charge from the negative terminal to the positive terminal of a 1.5 V AA batter
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!