Answer:
18,850 Hz
Explanation:
We need to figure out the wavelength of the sound wave.
Thus,
Wavelength = 1000 * Lowest Amplitude Wave
Wavelength = 1000 * 2.0 * 10^(-5)
Wavelength = 0.02
Or,

Now, we need the frequency of this wave. It goes by the formula:

Where
f is the frequency in Hz
v is the speed of sound in air (to be 377 m/s)
is the wavelength (we found to be 0.02)
Substituting, we find the frequency:

The wave has frequency of 18,850 Hz
Answer:
<h2>1/7 kg</h2>
Explanation:
Find the diagram attached for better understanding of the question.
Given the mass of one of the blocks to be 1.0kg and accelerates downward at 3/4g.
g = acceleration due to gravity.
Let the block accelerating downward be M, mass of the other body be 'm' and the acceleration of the body M be 'a'.
M = 1.0 kg and a = 3.4g
According to newton's second law; 
For body of mass m;
T - mg = ma ... (1)
For body of mass M;
Mg - T = Ma ... (2)
Adding equation 1 ad 2;
+Mg -mg = ma + Ma
Ma-Mg = -mg-ma
M(a-g) = -m(a+g)
Substituting M = 1.0 kg and a = 3/4g into the resulting equation;
3/4 g-g = -m(3/4 g+g)
3/4 g-g = -m(7/4 g)
-g/4 = -m(7/4 g)
1/4 = 7m/4
28m = 4
m = 1/7 kg
Therefore the mass of the other box is 1/7 kg
Answer:
T≈2.2876585681s
Explanation:
Since you were not given the degrees of amplitude or radians of amplitude, we assume that the degrees of amplitude are less than 20∘ or 20∘ and we also assume that this is a simple pendulum
Explanation:
Given , F = 30N and mass m = 90kg
°•° F = ma
=> a = F/m
=> a = 30/90
=> a = 1/3m/s^2
When charge is placed near to us whether it is stationary or if it is in motion then we can say it will produce electric field.
Now when charge is in motion then it will also produce electric current
So due to a moving charge there is some magnetic field also near it
it is given as

So here we can say that nearby a moving charge we must have experience the effect of electric field as well as magnetic field
so the correct answer must be
<em>B) An electric & magnetic field</em>