The answer to your question is option 1. I hope this has helped.
You can solve this problem through dimensional analysis.
First, find the molar mass of NaHCO3.
Na = 22.99 g
H = 1.008 g
C = 12.01 g
O (3) = 16 (3) g
Now, add them all together, you end with with the molar mass of NaHCO3.
22.99 + 1.008 + 12.01 + 16(3) = 84.008 g NaHCO3. This number means that for every mole of NaHCO3, there is 84.008 g NaHCO3. In simpler terms, 1 mole NaHCO3 = 84.008 g NaHCO3.
After finding the molar mass of sodium bicarbonate, now you can use dimensional analysis to solve for the number of moles present in 200. g of sodium bicarbonate.

Cross out the repeating units which are g NaHCO3, and the remaining unit is mole NaHCO3
200. * 1 = 200
200/ 84.008 = 2.38
Notice how there are only 3 sig figs in the answer. This is because the given problem only gave three sig figs.
Your final answer is 2.38 mol NaHCO3.
Answer:
This question is incomplete; the complete part is:
A) All cell have a cell wall.
B) All cell arise from pre-existing cells.
C) All cell are capable of photosynthesis.
D) All cell can develop into any other type of cell.
The answer is B
Explanation:
The commonly known universal theory proposed in 1838 took the contribution from three remarkable scientists namely: botanist Matthias Schleiden, anatomist Theodor Schwann and biologist Rudolph Virchow. According to the question, Mathias discovered that all plants are made of cells, Schwann determined that all animals are made of cells while Virchow determined that all living things are composed of cells.
However, in addition to Virchow's discovery, he also discovered and proposed that "All cell arise from pre-existing cells", which till date forms part of the three components of the cell theory. The three parts are:
- Cell is the fundamental and basic unit of all living things.
- All living things are made up of one or more cells
- All cells arise from pre-existing cells
Answer:
b is the anwer
Explanation:
the option is the explanation
Hydrophobic molecules tend to be nonpolar molecules that group together to form micelles rather than be exposed to water. Hydrophobic molecules typically dissolve in nonpolar solvents (e.g., organic solvents).