<span>c.Solids have a fixed shape, so they do not show random motion of particles.</span>
Answer:
982.5 kg/m³
Explanation:
When the temperature of a fluid increases, it dilates, and because of the variation of the volume, it's density will vary too. The density can be calculated by the expression:
ρ₁ = ρ₀/(1 + β*(t₁ - t₀))
Where ρ₁ is the final density, ρ₀ the initial density, β is the constant coefficient of volume expansion, t₁ the final temperature, and t₀ the initial temperature.
At t₀ = 4°C, the water desity is ρ₀ = 1,000 kg/m³. The value of the constant for water is β = 0.0002 m³/m³ °C, so, for t₁ = 93°C
ρ₁ = 1,000/(1 + 0.0002*(93 - 4))
ρ₁ = 1,000/(1+ 0.0178)
ρ₁ = 982.5 kg/m³
Answer:
V=0.68L
Explanation:
For this question we can use
V1/T1 = V2/T2
where
V1 (initial volume )= 0.75 L
T1 (initial temperature in Kelvin)= 303.15
V2( final volume)= ?
T2 (final temperature in Kelvin)= 273.15
Now we must rearrange the equation to make V2 the subject
V2= (V1/T1) ×T2
V2=(0.75/303.15) ×273.15
V2=0.67577931717
V2= 0.68L
-Photons are absorbed by hot gas atoms
-Energy is transferred through large-scale movement of material
-Energy is released into the photosphere
They are eaten by Tertiary consumers