Answer
Rapid Combustion
Explanation:
An explosion is a combustion and a quick reaction, That makes it rapid
Answer:
The 2s orbital is at a higher energy level.
Explanation:
1s and 2s are the sub-orbitals that are located in an atom. They are nearest to the nucleus and are found on the s sub-orbital. The difference between 1s and 2s is the difference in their level of energy. 1s has low energy as compared to 2s. 1s orbital has the lowest energy because it is located closed to the nucleus. 2s orbital has higher energy than 1s because it's orbit is larger than 1s.
Answer:

Explanation:
Hello,
In this case, we can use the ideal gas equation:

So we know the temperature, pressure and volume, therefore we can easily compute the required moles as shown below:

Best regards.
Answer:
A sample of a gas (5.0 mol) at 1.0 atm is expanded at constant temperature from 10 L to 15 L. The final pressure is 0.67 atm.
Step by Step Explanation?
Boyle's law states that in constant temperature the variation volume of gas is inversely proportional to the applied pressure.
The formula is,
P₁ x V₁ = P₂ × V₂
Where,
P₁ is initial pressure = 1 atm
P2 is final pressure = ? (Not Known)
V₁ is initial volume = 10 L
V₂ is final volume = 15 L
Now put the values in the formula,
\begin{gathered}\rm 1\times 10 = P_2\times 15\\\\\rm P_2 = \frac{10}{15\\} \\\\\rm P_2 = 0.67\end{gathered]
Therefore, the answer is 0.67 atm.
Answer:
9.474 x 10^2
Explanation:
ok. first you have to get the value in the required unit so 9474mm/(10mm/cm) = 947.4 so scientific notation states that the number must be raised to any power of an integer and the value of the number being raised must be less than than 10 and more than or equal to 1
so it must have one digit in front so.. 947.4 becomes 9.474 and because you move 2 places to the left, ur power is positive 2
and proof 10^2 is 100 so multiply 9.474 by 100 and u will get 947.4 cm which is also 9474 mm