Answer:
will have a greater partial charge.
Explanation:
A polar covalent bond is defined as the bond which is formed when there is a low difference of electronegativities between the atoms, thus resulting in charge difference. Example: 
Non-polar covalent bond is defined as the bond which is formed when there is no difference of electronegativities between the atoms and thus there is no charge difference. Example: 
Ionic bond is formed when there is complete transfer of electron from a highly electropositive metal to a highly electronegative non metal. The electronegative difference between the elements is high. The charges on cation and anion neutralise each other. Example: 
Thus as
will have greater partial charge.
Density<span> is </span>defined<span> as the ratio between mass and volume or mass per unit volume.
Source is google
</span>
Answer:
Approximately 6.81 × 10⁵ Pa.
Assumption: carbon dioxide behaves like an ideal gas.
Explanation:
Look up the relative atomic mass of carbon and oxygen on a modern periodic table:
Calculate the molar mass of carbon dioxide
:
.
Find the number of moles of molecules in that
sample of
:
.
If carbon dioxide behaves like an ideal gas, it should satisfy the ideal gas equation when it is inside a container:
,
where
is the pressure inside the container.
is the volume of the container.
is the number of moles of particles (molecules, or atoms in case of noble gases) in the gas.
is the ideal gas constant.
is the absolute temperature of the gas.
Rearrange the equation to find an expression for
, the pressure inside the container.
.
Look up the ideal gas constant in the appropriate units.
.
Evaluate the expression for
:
.
Apply dimensional analysis to verify the unit of pressure.
Answer:
The above compound is an ether. Give thestructure of the product(s) and indicate the major mechanism of the reaction (SN1, SN2, E1 or E2). Indicate stereochemistry when necessary.
The mechanism that explains this transformation begins with the protonation of the ether, which allows the subsequent SN2 attack of the iodide ion. This reaction forms ethyl iodide and ethanol, which is also converted to ethyl iodide by reaction with excess HI.
Explanation:
The SN2 reaction (also known as bimolecular nucleophilic substitution or as an attack from the front) is a type of nucleophilic substitution, where a pair of free electrons from a nucleophile attacks an electrophilic center and binds to it, expelling another group called the leaving group. Consequently, the incoming group replaces the outgoing group in one stage. Since the two reactant species are involved in this slow limiting stage of the chemical reaction, this leads to the name bimolecular nucleophilic substitution, or SN2. Among inorganic chemicals, the SN2 reaction is often known as the exchange mechanism.
I think it was D. Hopefully I’m right