1070 hours.
1 mole of iron-59 would mass 59 grams, so 0.133 picograms would be 0.133x10^-12 / 59 = 2.25x10^-15 moles of iron-59. Multiplying by Avogadro's number, we can determine the number of atoms of iron-59 we have, so: 2.25x10^-15 * 6.02214x10^23 = 1.35x10^9
Since we have 242 decays over a period of 1 second, we can divide the
number of atoms left by the original number of atoms
(1350000000 - 242)/1350000000
= 1349999758/1350000000
= 0.999999820740741
And calculate the logarithm to base 2 of that quotient.
ln(0.999999820740741)/ln(2)
= -1.79259275281191x10^-7/0.693147180559945
= -2.58616467481524x10^-7
The reciprocal of this number will be the half life in seconds. So
-1/2.58616467481524x10^-7
= -3866729.79388461
And dividing by 3600 (number of seconds in an hour) will give the half-life in
hours.
-3866729.79388461 / 3600 = -1074.091609
So the half life in hours to 3 significant figures is 1070 hours.
Dividing that figure by 24 gives a half life of 44.58 days which is in pretty close agreement to the official half-life of 44.495 days for iron-59.
Answer:
Atoms consist of three basic particles: protons, electrons, and neutrons. The nucleus (center) of the atom contains the protons (positively charged) and the neutrons (no charge). The outermost regions of the atom are called electron shells and contain the electrons (negatively charged).
Answer:
<em>D. A combustion reaction</em>
Explanation:
If you meant the word silicon then yes, silicon is a semiconductor and its ability to conduct gets better as the temp. rises
While metallic bonds have the strong electrostatic force of attractions between the cation or atoms and the delocalized electrons in the geometrical arrangement of the two metals. ... Metallic bonds are malleable and ductile, while covalent bonds and ionic bonds non-malleable and non-ductile.