Answer:
10.08 L.
Explanation:
- If we assume that CO₂ gas behaves ideally at STP (standard T(0.0 °C) and P(1.0 atm)):
<em>It is known that 1.0 mole of ideal gas occupies 22.4 L at STP conditions.</em>
<em></em>
<u><em>Using cross multiplication:</em></u>
1.0 mole of CO₂ gas occupies → 22.4 L.
0.45 mole of CO₂ gas occupies → ??? L.
<em>∴ The volume occupied by 0.45 mole of CO₂ gas </em>= (0.45 mol)(22.4 L)/(1.0 mol) = <em>10.08 L.</em>
Answer:
11.25moles of CO2
Explanation:
First, let us generate a balanced equation for the reaction of propane to produce CO2. This reaction called Combustion. It is a reaction in which propane burns in air (O2) to produce CO2 and H20. The equation is given below:
C3H8 + 5O2 —> 3CO2 + 4H2O
From the equation,
1mole of C3H8 produced 3moles of CO2.
Therefore, 3.750 moles of C3H8 will produce = 3.750 x 3 = 11.25moles of CO2
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.