Answer:
The electrons where in motion
The new pressure, P₂ is 6000 atm.
<h3>Calculation:</h3>
Given,
P₁ = 1.5 atm
V₁ = 40 L = 40,000 mL
V₂ = 10 mL
To calculate,
P₂ =?
Boyle's law is applied here.
According to Boyle's law, at constant temperature, a gas's volume changes inversely with applied pressure.
PV = constant
Therefore,
P₁V₁ = P₂V₂
Put the above values in the equation,
1.5 × 40,000 = P₂ × 10
P₂ = 1.5 × 4000
P₂ = 6000 atm
Therefore, the new pressure, P₂ is 6000 atm.
Learn more about Boyle's law here:
brainly.com/question/23715689
#SPJ4
Answer:
B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2
Explanation:
Hello,
In this case, we should understand oxidizing agents as those substances able to increase the oxidation state of another substance, therefore, in B. reaction we notice that copper oxidation state at the beginning is zero (no bonds are formed) and once it reacts with nitric acid, its oxidation states raises to +2 in copper (II) nitrate, thus, in B. Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2 nitritc acid is acting as the oxidizing agent.
Moreover, in the other reactions, copper (A.), sodium (C. and D.) remain with the same initial oxidation state, +2 and +1 respectively.
Regards.
Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M