The equation is x/25=3.2
*25 *25
-------------
x=80g
The compound HClO4, when placed in water, will dissociate into the ions, H+ and ClO4-. Therefore, the 2.0 M solution will also form 2.0 M H+. The pH is calculated through the equation,
pH = -log[H+]
Substituting,
pH = -log[2] = -0.3
Thus, the pH of the solution is -0.3.
For the hypothesis put what you think will happen
Answer:
![AU^{3+} : [Rn] 5f^3](https://tex.z-dn.net/?f=AU%5E%7B3%2B%7D%20%3A%20%5BRn%5D%205f%5E3)
Explanation:
Writing electronic configuration of any element you should know atomic number of that element ,
and also electrons are filling according to their energy level and first electron is filled in the lower energy orbital
and it follows n+1 rule if n+1 is same for two orbital electron will go first in the lowest value of n.
writing electronic configuration of ion can be done like first for their neutral atom and then add or remove electron it will make things easy because there are also some eception case their you may do wrong.
![AU : [Rn] 5f^3 6d^1 7s^2](https://tex.z-dn.net/?f=AU%20%3A%20%5BRn%5D%205f%5E3%206d%5E1%207s%5E2)
remove three electron from outer most shell of AU
![AU^{3+} : [Rn] 5f^3](https://tex.z-dn.net/?f=AU%5E%7B3%2B%7D%20%3A%20%5BRn%5D%205f%5E3)
Answer:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids)
Explanation:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids), and each is an important component of the cell and performs a wide array of functions. ... Biological macromolecules are organic, meaning that they contain carbon.