Answer:
The Bohr model show the protons in a carbon atom using the model; "Electrons move in fixed orbits around a nucleus of protons and neutrons."
According to Bohr's model of the atoms, the Rutherford model is basically correct. This implies that Bohr model accepts the idea of a nucleus containing nucleons(protons and neutrons).
In addition, the model also postulates that electrons are found in fixed orbits. These fixed orbits are called energy levels or shells.
A graphic description of this is shown in the image attached to this answer.
Learn more: brainly.com/question/3964366
Explanation:
The balanced equation for the decomposition of solid lead iv oxide is as follows: 2PbO2 = 2PbO + O2.
Lead IV oxide decompose to give lead ll oxide and oxygen. Lead iv oxide is thermally unstable and it usually decomposes into oxygen and lead ll oxide when heated. Lead ll oxide is more stable than lead lV oxide.
Many homeowners treat their lawns with CaCO3(s) to reduce
the acidity of the soil. The net ionic equation for the reaction of CaCO3(s)
with a strong acid, HCl (I chose HCl because it is a strong acid) is CaCO3(s) +2
HCl(aq) → CaCl2(s) + H2O(aq) + CO2(g).
Answer:the pH is 12
Explanation:
First We need to understand the structure of trimethylamine
Due to the grades of the bond in the nitrogen with a hybridization sp3 is 108° approximately, then is generated a dipole magnetic at the upper side of the nitrogen, this dipole magnetic going to attract a hydrogen molecule of the water making the water more alkaline
C3H9N+ H2O --> C3H9NH + OH-
![k=\frac{[C3H9NH]*[OH-]}{[C3H9N]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BC3H9NH%5D%2A%5BOH-%5D%7D%7B%5BC3H9N%5D%7D)
Then:
The concentration of the trimethylamine is 0.3 and the concentration of the ion C3H9NH is equal to the OH- relying on the stoichiometric equation. We could find the concentration of the OH- ion with the square root of the multiplication between k and the concentration of trimethylamine
[OH-]=
[OH-]=0.01
pH=14-(-log[OH-])
pH=12