Answer:
Volcanic Eruptions
Explanation:
The volcano can start showing signs that it may be about to explode.
I would believe that this is false.
Answer:
The velocity with which the jumper strike the mat in the landing area is 6.26 m/s.
Explanation:
It is given that,
A high jumper jumps over a bar that is 2 m above the mat, h = 2 m
We need to find the velocity with which the jumper strike the mat in the landing area. It is a case of conservation of energy. let v is the velocity. it is given by :

g is acceleration due to gravity

v = 6.26 m/s
So, the velocity with which the jumper strike the mat in the landing area is 6.26 m/s. Hence, this is the required solution.
Answer:
a force is represented by a<u> vector </u>the choice of a <u>reference frame</u> is necessary
Explanation:
The answer is no. If you are dealing with a conservative force and the object begins and ends at the same potential then the work is zero, regardless of the distance travelled. This can be shown using the work-energy theorem which states that the work done by a force is equal to the change in kinetic energy of the object.
W=KEf−KEi
An example of this would be a mass moving on a frictionless curved track under the force of gravity.
The work done by the force of gravity in moving the objects in both case A and B is the same (=0, since the object begins and ends with zero velocity) but the object travels a much greater distance in case B, even though the force is constant in both cases.