Answer:
Deltoid Force, 
Additional Information:
Some numerical information are missing from the question. However, I will derive the formula to calculate the force of the deltoid muscle. All you need to do is insert the necessary information and calculate.
Explanation:
The deltoid muscle is the one keeping the hand arm in position. We have two torques that apply to the rotating of the arm.
1. The torque about the point in the shoulder for the deltoid muscle,
2. The torque of the arm,
Assuming the arm is just being stretched and there is no rotation going on,
= 0
= 0
⇒ 

Where,
is radius of the deltoid
is the force of the deltiod
is the angle of the deltiod
is the radius of the arm
is the force of the arm ,
which is the mass of the arm and acceleration due to gravity
is the angle of the arm
The force of the deltoid muscle is,

but
,
∴ 
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A
The gap between the two flasks is partially evacuated of air creating a near vacuum which significantly reduces heat transfer by conduction or convection
Answer:
49.79 m/s
Explanation:
Given:
Initial velocity of the roller coaster is, 
Vertical drop or the displacement of the roller coaster is, 
The displacement is negative as the motion is in downward direction.
Now, as the motion is in vertical direction only, the acceleration of the roller coaster will be due to gravity acting in the downward direction.
So, the acceleration of the roller coaster is, 
Now, using the following equation of motion:

Where, 'v' is the velocity of the roller coaster at the bottom.
Plug in all the given values and solve for 'v'. This gives,

Therefore, the speed of the roller coaster at the bottom of the drop is 49.79 m/s.