Three complete orders on each side of the m=0 order can be produced in addition to the m=0 order.
The ruling separation is d=1/(470mm-1)

Diffraction lines occurs at an angle θ such that dsin=mλ,when λ is the wavelength and m is an integer.
Notice that for a given order,the line associated with a long wavelength is produced at a greater angle than the line associated with shorter wavelength.
we take λ to be the longest wavelength in the visible spectrum (538nm) and find the greatest integer value of m such that θ is less than 90°.
That is,find the greater integer value of m for which mλ<d.
since,d/λ

There are three complete orders on each side of the m=0 order.
The second and third orders overlap.
learn more about diffraction from here: brainly.com/question/28168352
#SPJ4
Answer:
As the number of turns in the coil increases, the strength of the electromagnet increases.
Explanation:
When current flows through a coil the coil behaves as an electromagnet. The strength of electromagnet depend the amount of current, no of turns of coil and the core of coil.
B=μ₀ N I
μ₀ = permeability of the core
N = Number of turns of the coil
I = Current flowing through the coil
Increasing the current and number of coils increase the strength of electromagnet.
I think you need to add more.. but I may know where you are leading
Was he 200 m away and made the trip in 200 seconds?
If yes...
2 m/s was his speed and 0 velocity
Answer:
<em>D. The total force on the particle with charge q is perpendicular to the bottom of the triangle.</em>
Explanation:
The image is shown below.
The force on the particle with charge q due to each charge Q = 
we designate this force as N
Since the charges form an equilateral triangle, then, the forces due to each particle with charge Q on the particle with charge q act at an angle of 60° below the horizontal x-axis.
Resolving the forces on the particle, we have
for the x-component
= N cosine 60° + (-N cosine 60°) = 0
for the y-component
= -f sine 60° + (-f sine 60) = -2N sine 60° = -2N(0.866) = -1.732N
The above indicates that there is no resultant force in the x-axis, since it is equal to zero (
= 0).
The total force is seen to act only in the y-axis, since it only has a y-component equivalent to 1.732 times the force due to each of the Q particles on q.
<em>The total force on the particle with charge q is therefore perpendicular to the bottom of the triangle.</em>
Answer:
3 x 10^5 J
Explanation:
mass of substance, m = 1 g = 0.001 kg
Velocity of light, c = 3 x 10^8 m/s
According to the Einstein mass energy equivalence, the energy associated with the mass is given by
E = m c^2
E = 0.001 x 3 x 10^8
E = 3 x 10^5 J