To determine whether a compound is polar or nonpolar you have to take into account:
1) formation of dipoles due to the difference in electronegativities of the atoms
2) shape of the molecule to conclude whether there is a net dipole momentum.
You already, likely, know that the electronegativities of H and O are significatively different, being O more electronegative thatn H. So, you can conclude easilty that the electrons are atracted more by O than by H, thus creating two dipoles H→O
Regarding the shape, it may appear that the molecule is symmetrical, which would lead to the cancellation of the two dipoles. But that is not the true. The H2O2 is not symmetrical.
The lewis structure just show this shape
** **
H - O - O - H
** **
which is what may induce to think that the molecule is symmetrical, leading to the misconception that it is nonpolar.
But in a three dimensional arrangement you could see that the hydrogens are placed in non symmetrical positions, which leads to the formation of a net dipole momentum, and thus to a polar molecule.
The fact that H2O2 is a polar compound is the reason why it can be mixed with water and the H2O2 that you buy in the pharmacy is normally a solution in water.
So, the hydrogen peroxide is polar because the hydrogens are not placed symmetrically in the molecule, which result in a net dipole momentum.
Answer: c. Some health risks are increased by heredity, which manifest under certain environmental conditions.
Explanation:
Many abiotic factors (non-living factors) such as radiations, hazardous substances present in the environment such as air, water and soil may originate from the industries, mining practices, fossil fuels and landfills. Some of the substances are carcinogenic and mutagenic in nature. These are capable of affecting the genetic make up of the organism. The genetic variations or mutations occurs may transmit from the parent to the offsprings.
Therefore, on the basis of the above information, c. Some health risks are increased by heredity, which manifest under certain environmental conditions. is the correct option.
Answer:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Explanation:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Answer:
60 grams of ice will require 30.26 calories to raise the temperature 1°C.
Explanation:
The amount of heat (Q) to raise the temperature of 60.0 g of ice by 1°C can be calculated from:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released or absorbed by the system.
m is the mass of the ice (m = 60.0 g).
c is the specific heat capacity of ice (c = 2.108 J/g.°C).
ΔT is the temperature difference (ΔT = 1.0 °C).
∴ Q = m.c.ΔT = (60.0 g)(2.108 J/g.°C)(1.0 °C) = 126.48 J.
<em>It is known that 1.0 cal = 4.18 J.</em>
<em>∴ Q = (126.48 J)(1.0 cal / 4.18 J) = 30.26 cal.</em>
Answer:
Oxidation, Reduction
Explanation:
A redox reaction is a short form for reduction-oxidation.
Reduction is a term which means that electron is gained while oxidation is a term which means that electron Is lost.
The species that gain electron is known as the oxidizing agent while the species losing electrons is known as the reducing agent