Answer:
True
Explanation:
The complete question is:
<u><em>"A reaction contains two reactants, A and B. If A is doubled, there will be a greater number of effective collisions between reactants. TRUE FALSE"</em></u>
Collision Theory indicates that chemical reactions take place because molecules, atoms or ions collide with each other.
Furthermore, the molecules must collide effectively, that is, not all reagent collisions lead to product formation. Effective shock means that the reagent molecules have enough kinetic energy at the time of the shock for their bonds to break and product bonds to form. In addition, the molecules of the reagents must be properly oriented for the reaction to take place.
As the concentration increases, the number of shocks increases. In other words, by increasing the concentration of the reactants, the probability of collision between their molecules increases, and therefore the number of effective collisions.So the statement is true-
Let the person at the Left be A and Person at the right be B
then the force by person A will be
Pulling force + Frictional Force = the force by the person
which is,
20N+11N=29N
then the force by person B will be,
25N+5N=30N
1) the net force will be 30N-29N=1N
2) the force are unbalanced as the net force acting on the object is not zero.
3) the rope will move towards the right as there is a net force of 1N towards the right.
<span>Answer:
Correct answers are- Electron affinity decreases; Cl has 7 valence electrons but Na has only 1. So Na is going to lose its e, Cl is going to gain an e.</span>
Answer:
A) The reaction mixture contains mostly products at equilibrium
Explanation:
For the general reaction
Reactants ⇌ Products
The equilibrium constant is
![K_{\text{eq}} = \dfrac{\text{[Products]}}{\text{[Reactants]}}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Beq%7D%7D%20%3D%20%5Cdfrac%7B%5Ctext%7B%5BProducts%5D%7D%7D%7B%5Ctext%7B%5BReactants%5D%7D%7D)
Thus, if K is large, the concentration of products is greater than that of reactants.
The reaction mixture will contain mostly products at equilibrium.
C) and E) are wrong. The equilibrium constant gives us information only on the position of equilibrium, not on how fast it is achieved.
Answer:
1.52M in NaCl
Explanation:
Molarity = moles solute / volume solution in Liters
=> molarity (M) = 3.8 moles / 2.5 Liters solution = 1.52 molar solution in NaCl