<h3>
Answer:</h3>
1031.4 Calories.
<h3>
Explanation:</h3>
We are given;
Mass of the copper metal = 50.0 g
Initial temperature = 21.0 °C
Final temperature, = 75°C
Change in temperature = 54°C
Specific heat capacity of copper = 0.382 Cal/g°C
We are required to calculate the amount of heat in calories required to raise the temperature of the copper metal;
Quantity of heat is given by the formula,
Q = Mass × specific heat capacity × change in temperature
= 50.0 g × 0.382 Cal/g°C × 54 °C
= 1031.4 Calories
Thus, the amount of heat energy required is 1031.4 Calories.
Answer:
See below
Explanation:
.045 liter / 22.4 l / mole * 6.022 x 10^23 molecules/mole * 2 atoms/molecule =
( * 2 becuase nitrogen gas is diatomic)
The answer is (1) Arrhenius acid and an electrolyte. The HNO3 is a H+ ion donor and OH- receptor. Electrolyte means the compound will release ion when dissolving in suitable ionized solution.
Answer:
Explanation:
Molar mass of KF= 39 + 19= 58g/mol
Mass of KF = 109g
Amount = mass/molar mass
Amount = 109/58
Amount = 1.9moles