Solution :
The given figure is a loop of a wire with a resistor.
When the switch S is closed for long time and is suddenly opened, the direction of the induced current can be find out by using the rule of right hand screw. According to the right hand screw rule, the direction of the magnetic field at the loop is in the direction that points outwards. The strength of the current rapidly decreases as it is switch off and the magnetic flux that is linked with the loop wire will also decrease.
According to the Lenz's law, the direction of the induced current must be such
the decrease in the magnetic flux. It means the direction of the magnetic field must be outwards and also normal to the plane of the screen. The direction of the induced anti clockwise or from right to left in the resistance.
Answer:
(a). The spring compressed is
.
(b). The acceleration is 1.5 g.
Explanation:
Given that,
Acceleration = a
mass = m
spring constant = k
(a). We need to calculate the spring compressed
Using balance equation

....(I)
The spring compressed is
.
(b). If the compression is 2.5 times larger than it is when the mass sits in a still elevator,
The compression is given by

Here, acceleration is zero
So, 
We need to calculate the acceleration
Put the value of x in equation (I)




Hence, (a). The spring compressed is
.
(b). The acceleration is 1.5 g.
A circuit is a closed circle that electricity can flow through.
Answer:
Balanced forces
Explanation:
Balanced forces are where two forces of equal size act on an object in opposite directions. It means that in each direction, any pushes and pulls are balanced by another force in the opposite direction.