THE KINETIC MOLECULAR THEORY STATES THAT ALL PARTICLES OF AN IDEAL GAS ARE IN CONSTANT MOTION AND EXHIBITS PERFECT ELASTIC COLLISIONS.
Explanation:
An ideal gas is an imaginary gas whose behavior perfectly fits all the assumptions of the kinetic-molecular theory. In reality, gases are not ideal, but are very close to being so under most everyday conditions.
The kinetic-molecular theory as it applies to gases has five basic assumptions.
- Gases consist of very large numbers of tiny spherical particles that are far apart from one another compared to their size.
- Gas particles are in constant rapid motion in random directions.
- Collisions between gas particles and between particles and the container walls are elastic collisions.
- The average kinetic energy of gas particles is dependent upon the temperature of the gas.
- There are no forces of attraction or repulsion between gas particles.
The formula for molality---> m = moles solute/ Kg of solvent
the solute here is NH₃ because it's the one with less amount. which makes water the solvent.
1) let's convert the grams of NH₃ to moles using the molar mass
molar mass of NH₃= 14.0 + (3 x 1.01)= 17.03 g/ mol
15.0 g (1 mol/ 17.03 g)= 0.881 mol NH₃
2) let's convert the grams of water into kilograms (just divide by 1000)
250.0 g= 0.2500 kg
3) let's plug in the values into the molality formula
molality= mol/ Kg---> 0.881 mol/ 0.2500 kg= 3.52 m
Silver has metallic bonding.
Silver is a very typical and main metal. The negatively charged electrons distribute themselves throughout the entire piece of metal and form non directional bonds between the positive silver ions, which is metallic bonding, and what silver contributes.
Adding a catalyst as this would speed up the reaction and the rest would slow it down