1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirill115 [55]
3 years ago
11

what would my engine exhaust sound like if i made a custom muffler that was just smooth on the inside, would it have an echoing

sound? the headers and the pipes would be smooth too (after market) on a nissan 350z would that make it rumble instead of the trumpet/trumbone sound?
Engineering
1 answer:
Elena L [17]3 years ago
8 0

Answer:

you know what sounds rlly nice? first have you seent he new corvettes? next u should here a nisan gtr. (like tanner foxes)

Explanation:

You might be interested in
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
True or false? if i were to hook up an ac voltage source to a resistor, the voltage drop across the resistor would be in phase w
hodyreva [135]

Answer: True

Explanation:

4 0
2 years ago
A contractor is planning on including several skylights in each unit of a residential development. What type of worker would she
Sladkaya [172]

Answer:

Glazier

Explanation:

Glaziers are workers who specializes in cutting and installation of glass works.

They work with glass in various surfaces and settings, such as cutting and installing windows and doors, skylights, storefronts, display cases, mirrors, facades, interior walls, etc.

Thus, the type of worker the contractor will hire for this project is a Glazier

8 0
3 years ago
Tahir travel twice as far as ahmed, but onley one third as fast. Ahmed starts travel on tuesday at noon at point x to point z 30
shepuryov [24]

Answer:

6:00 pm the next day

Explanation:

Given that

Tahir traveled twice as far as Ahmed. We say,

Ahmed traveled a distance, D

Tahir would travel a distan, 2D

Tahir traveled 1/3 as fast as Ahmed, so we say

Ahmed traveled at a speed, S

Tahir would travel at a speed, S/3

If Ahmed starts travel on tuesday at noon at point x to point z 300km, by 9:00pm,

Time taken by Ahmed to travel is

9:00 pm - 12:00 pm = 9 hours

Ahmed, traveled 300 km in 9 hours, meaning he traveled at 33.3 km in an hour.

Speed, S that Ahmed traveled with is 33.3 km/h

Remember, we stated that Tahir travels at a speed of S/3, that is, The speed of Tahir is

33.3/3 = 11.1 km/h.

300 km would then be traveled in 300 km/11.1 km/h = 27 hours.

Tahir started traveling, 3 hours after Ahmed, that is 12:00 pm + 3:00 hrs = 3:00 pm, and if he's to spend 27 hours on the journey he would reach destination z at 6:00 pm the next day

7 0
3 years ago
What’s the number of gold atoms in a nanogram? a picogram?
zvonat [6]

Answer :

The number of gold atoms in nanogram is, 3.057\times 10^{12}

The number of gold atoms in picogram is, 3.057\times 10^{9}

Explanation :

As we know that the molar mass of gold is, 196.97 g/mole. That means, 1 mole of gold has 196.97 grams of mass of gold.

As we know that,

1 mole contains 6.022\times 10^{23} number of atoms.

First we have to determine the number of gold atoms in a nanogram.

As, 196.97 grams of gold contains 6.022\times 10^{23} number of gold atoms

And, 1 grams of gold contains \frac{1g}{196.97g}\times (6.022\times 10^{23}) number of gold atoms

So, 10^{-9} nanograms of gold contains \frac{1g}{196.97g}\times (10^{-9})\times (6.022\times 10^{23})=3.057\times 10^{12} number of gold atoms

The number of gold atoms in nanogram is, 3.057\times 10^{12}

Now we have to determine the number of gold atoms in a picogram.

As, 196.97 grams of gold contains 6.022\times 10^{23} number of gold atoms

And, 1 grams of gold contains \frac{1g}{196.97g}\times (6.022\times 10^{23}) number of gold atoms

So, 10^{-12} picograms of gold contains \frac{1g}{196.97g}\times (10^{-12})\times (6.022\times 10^{23})=3.057\times 10^{9} number of gold atoms

The number of gold atoms in picogram is, 3.057\times 10^{9}

8 0
3 years ago
Other questions:
  • Now, suppose that you have a balanced stereo signal in which the left and right channels have the same voltage amplitude, 500 mV
    8·1 answer
  • The Clausius inequality expresses which of the following laws? i. Law of Conservation of Mass ii. Law of Conservation of Energy
    8·1 answer
  • Consider laminar, fully developed flow in a channel of constant surface temperature Ts. For a given mass flow rate and channel l
    15·1 answer
  • An eddy current separator is to separate aluminum product from an input streamshredded MSW. The feed rate to the separator is 2,
    7·1 answer
  • Consider the following signal:
    8·1 answer
  • Gummy gummy bears gummy gummy bears
    11·2 answers
  • 1) What output force (Fout) is produced if the lever arm length (rout) is 100 mm?
    13·2 answers
  • Complete the following sentence.
    10·1 answer
  • ?Why the efficiency of Class A amplifier is very poor​
    11·1 answer
  • Which of these processes uses a die and a press to form parts?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!